Home
Class 12
MATHS
-2[(1)/(8)+(1)/(64)+(1)/(384)+…..oo]=...

`-2[(1)/(8)+(1)/(64)+(1)/(384)+…..oo]=`

A

`log_(e )(1//4)`

B

`log_(e )(1//2)`

C

`log_(e )(3//4)`

D

`log_(e )(3//8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \(-2\left(\frac{1}{8} + \frac{1}{64} + \frac{1}{384} + \ldots\right)\), we can follow these steps: ### Step 1: Identify the series The series inside the brackets is: \[ S = \frac{1}{8} + \frac{1}{64} + \frac{1}{384} + \ldots \] ### Step 2: Rewrite the terms We can express the terms in a more recognizable form. Notice that: - \(\frac{1}{8} = \frac{1}{2^3}\) - \(\frac{1}{64} = \frac{1}{2^6}\) - \(\frac{1}{384} = \frac{1}{2^8 \cdot 3}\) The denominators suggest a pattern involving powers of 2 and possibly factorials or products. ### Step 3: Factor out common terms Let's factor out the common terms from the series. We can rewrite the series as: \[ S = \frac{1}{8} \left(1 + \frac{1}{8} + \frac{1}{48} + \ldots\right) \] ### Step 4: Recognize the series as a logarithmic series The series can be expressed in terms of a logarithmic expansion. Recall the expansion: \[ \log(1-x) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots\right) \] If we set \(x = \frac{1}{4}\), we can relate our series to this logarithmic form. ### Step 5: Apply the logarithmic series Thus, we can express \(S\) as: \[ S = -\log\left(1 - \frac{1}{4}\right) = -\log\left(\frac{3}{4}\right) \] ### Step 6: Multiply by -2 Now, we multiply the result by -2: \[ -2S = -2\left(-\log\left(\frac{3}{4}\right)\right) = 2\log\left(\frac{3}{4}\right) \] ### Final Answer Thus, the final answer is: \[ -2\left(\frac{1}{8} + \frac{1}{64} + \frac{1}{384} + \ldots\right) = 2\log\left(\frac{3}{4}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find 1-(1)/(2)+(1)/(4)-(1)/(8)+(1)/(16)-(1)/(32)+......oo

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

The sum of the series 1+(1)/(4)+(1)/(16)+(1)/(64)+....oo is

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8)) ... Upto oo = X

((y-1)-(1)/(2)(y-1)^(2)+(1)/(3)(y-1)^(3)-....oo)/((a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-....oo)=

2.4^((-1)/(4))*8^((1)/(9))*16^((-1)/(16))*32^((1)/(25))*64^((-1)/(36))*……….oo=

1/(2!)-1/(3!)+1/(4!) .....oo =