Home
Class 12
MATHS
log(1+x+x^(2)+...oo)=...

`log(1+x+x^(2)+...oo)=`

A

`x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+…oo`

B

`x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+…oo`

C

`1+x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo`

D

`1-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+…oo`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (x)/(1+(log x)(log x)....oo), AA x in [1, 3] is non-differentiable at x = k. Then, the value of [k^(2)] , is (where [*] denotes greatest integer function).

98. The value of x satisfying the equation ((sqrtpi)^(log_pi(x))).((sqrtpi)^(log_(pi^2)(x))).((sqrtpi).^(log_(pi^4)(x))).((sqrtpi)^(log_(pi^8)(x)))...oo=3 is equal to

If f(x) = x/(1 + (In x)(ln x). ..oo) AA x in [1.oo) then int_1^(2e) f(x) dx equals:

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

Discuss the continuity of the function f(x) = underset(n rarr oo)(lim) (log (2 + x)-x^(2n) sin x)/(1+x^(2n))"at x" = 1

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If int x log (1+x^(2))dx= phi (x) log (1+x^(2))+x(Psi)+C , then

If 0ltxlt1 , prove that: log(1+x)+log(1+x^2)+log(1+x^4)+… oo=-log(1-x)

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) none of these

If log_(3)x-(log_(3)x)^(2)le(3)/(2)log_((1//2sqrt(2)))4 , then x can belong to (a) (-oo,1//3) (b) (9,oo) (c) (1,6) (d) (-oo,0)