Home
Class 12
MATHS
(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3)....

`(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=`

A

`log_(e )((3)/(2))`

B

`(1)/(2)+log_(e )((3)/(2))`

C

`(1)/(2)`

D

`(1)/(2)-log_(e )((3)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = \frac{2}{1} \cdot \frac{1}{3} + \frac{3}{2} \cdot \frac{1}{9} + \frac{4}{3} \cdot \frac{1}{27} + \frac{5}{4} \cdot \frac{1}{81} + \ldots \] we can rewrite the terms in a more manageable form. ### Step 1: Rewrite the terms The series can be expressed as: \[ S = \left( \frac{2}{1} \cdot \frac{1}{3} \right) + \left( \frac{3}{2} \cdot \frac{1}{9} \right) + \left( \frac{4}{3} \cdot \frac{1}{27} \right) + \left( \frac{5}{4} \cdot \frac{1}{81} \right) + \ldots \] This can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{n+1}{n} \cdot \frac{1}{3^n} \] ### Step 2: Split the terms We can separate the series into two parts: \[ S = \sum_{n=1}^{\infty} \frac{1}{3^n} + \sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n} \] ### Step 3: Calculate the first series The first series is a geometric series: \[ \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \] ### Step 4: Calculate the second series The second series can be recognized as the series for \(-\log(1-x)\): \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x) \] For \(x = \frac{1}{3}\): \[ \sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n} = -\log\left(1 - \frac{1}{3}\right) = -\log\left(\frac{2}{3}\right) \] ### Step 5: Combine the results Now we combine both parts: \[ S = \frac{1}{2} - \left(-\log\left(\frac{2}{3}\right)\right) = \frac{1}{2} + \log\left(\frac{3}{2}\right) \] ### Final Answer Thus, the final answer for the series is: \[ S = \frac{1}{2} + \log\left(\frac{3}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=

(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =

Prove that : Find the sum of the infinite series 1+(2)/(3).(1)/(2)+(2.5)/(3.6)((1)/(2))^(2)+(2.5.8)/(3.6.9)((1)/(2))^(3)+......oo

Write the following surds in descending order of their magnitudes : (i)(2)^(1/3),(3)^(1/6),(4)^(1/9)" "(ii)(3)^(1/3),(5)^(1/4),sqrt(2),(10)^(1/6)

(1+1/3.(1)/(2^(2))+1/5.(1)/(2^(4))+1/7(1)/2^(6)+…..oo) =