Home
Class 12
MATHS
If f(x)=(1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(...

If `f(x)=(1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(3(x+1)^(3))+…(x gt 1)` and f(1), f(2), f(3) are respectively p, q, r then their ascending order is

A

p, q, r

B

r, p, q

C

r, q, p

D

p, r, q

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as follows: \[ f(x) = \frac{1}{x+1} + \frac{1}{2(x+1)^2} + \frac{1}{3(x+1)^3} + \ldots \] This series can be recognized as a logarithmic series. We can express it in a more manageable form. ### Step 1: Rewrite the function We can rewrite the function \( f(x) \) using the series expansion for logarithms. The series can be expressed as: \[ f(x) = \sum_{n=1}^{\infty} \frac{1}{n (x+1)^n} \] This series is similar to the Taylor series expansion for \( -\log(1 - t) \) evaluated at \( t = \frac{1}{x+1} \): \[ -\log(1 - t) = \sum_{n=1}^{\infty} \frac{t^n}{n} \] By substituting \( t = \frac{1}{x+1} \), we have: \[ f(x) = -\log\left(1 - \frac{1}{x+1}\right) = -\log\left(\frac{x}{x+1}\right) = \log\left(\frac{x+1}{x}\right) \] ### Step 2: Evaluate \( f(1) \), \( f(2) \), and \( f(3) \) Now we can evaluate \( f(1) \), \( f(2) \), and \( f(3) \): 1. **Calculate \( f(1) \)**: \[ f(1) = \log\left(\frac{1+1}{1}\right) = \log(2) \] Let \( p = f(1) = \log(2) \). 2. **Calculate \( f(2) \)**: \[ f(2) = \log\left(\frac{2+1}{2}\right) = \log\left(\frac{3}{2}\right) \] Let \( q = f(2) = \log\left(\frac{3}{2}\right) \). 3. **Calculate \( f(3) \)**: \[ f(3) = \log\left(\frac{3+1}{3}\right) = \log\left(\frac{4}{3}\right) \] Let \( r = f(3) = \log\left(\frac{4}{3}\right) \). ### Step 3: Ascending order of \( p \), \( q \), and \( r \) Now we need to determine the ascending order of \( p \), \( q \), and \( r \): - We know that \( \log(2) > \log\left(\frac{4}{3}\right) > \log\left(\frac{3}{2}\right) \) because: - \( \frac{4}{3} > 2 \) implies \( \log\left(\frac{4}{3}\right) > \log(2) \) - \( \frac{3}{2} < 2 \) implies \( \log\left(\frac{3}{2}\right) < \log(2) \) Thus, we can conclude: \[ \log\left(\frac{3}{2}\right) < \log\left(\frac{4}{3}\right) < \log(2) \] This means: \[ q < r < p \] ### Final Result The ascending order of \( f(1) \), \( f(2) \), and \( f(3) \) is: \[ \text{Ascending order: } q < r < p \quad \text{(i.e., } \log\left(\frac{3}{2}\right) < \log\left(\frac{4}{3}\right) < \log(2)\text{)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then

If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)) , then f'(-(1)/(2)) is equal to

If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(x+1))| then f(50)+f(51)..f(99) is equal to

For x in(0,1) arrange f_(1)(x) = (1)/(9-x^(2)), f_(2)(x) = (1)/(9-2x^(2)) and f_(3)(x) = (1)/(9-x^(2)-x^(3)) in ascending order and hence prove that 1/6 ln2 lt int_(0)^(1)(1)/(9-x^(2)-x^(3)) dx lt (1)/(6sqrt(2)) ln 5 .

If f:R-{-(1)/(2)}toR-{(1)/(2)} is defined by f(x)=(x-3)/(2x+1) , then f^(-1)(x) is

Given f(x) = 1/( (x^2 + 2x+1)^(1/3) + (x^2 -1)^(1/3) + (x^2 - 2x + 1)^(1/3)) and E = f(1) + f(3) + f(5) + ............ + f(999), then

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).