Home
Class 12
MATHS
If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(...

If `y=2x^(2)-1` then `(1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty` equals to

A

`-log((y-1)/(y+1))`

B

`-log((1+y)/(1-y))`

C

`-log((1-y)/(1+y))`

D

`-log((2+y)/(2-y))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

If lim_(a rarr infty) (1)/(a)int_(0)^(infty)(x^(2)+ax+1)/(1+x^(4)). "tan"^(-1)((1)/(x))dx is equal to (pi^(2))/(K), where K in N, then K equals to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

The sum of the series (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3) ….. To infty is

The solution of (dy)/(dx)=((x-1)^2+(y-2)^2tan^(- 1)((y-2)/(x-1)))/((x y-2x-y+2)tan^(- 1)((y-2)/(x-1))) is equal to

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to