Home
Class 12
MATHS
If |a| lt 1, b = sum(k=1)^(oo) (a^(k))/(...

If `|a| lt 1, b = sum_(k=1)^(oo) (a^(k))/(k) rArr a=`

A

`sum_(k=1)^(oo)((-1)^(k)b^(k))/(k)`

B

`sum_(k=1)^(oo)((-1)^(k-1)b^(k))/(k!)`

C

`sum_(k=1)^(oo)((-1)^(k)b^(k))/((k-1)!)`

D

`sum_(k=1)^(oo)((-1)^(k-1)b^(k))/((k+1)!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( a \) in terms of \( b \) given that \( b = \sum_{k=1}^{\infty} \frac{a^k}{k} \) and \( |a| < 1 \), we can follow these steps: ### Step 1: Recognize the Series The series \( b = \sum_{k=1}^{\infty} \frac{a^k}{k} \) is known to be the Taylor series expansion for \( -\ln(1 - a) \) when \( |a| < 1 \). ### Step 2: Write the Equation From the Taylor series, we have: \[ b = -\ln(1 - a) \] ### Step 3: Solve for \( a \) To express \( a \) in terms of \( b \), we first isolate \( \ln(1 - a) \): \[ \ln(1 - a) = -b \] Now, exponentiate both sides to remove the logarithm: \[ 1 - a = e^{-b} \] ### Step 4: Rearrange to Find \( a \) Now, we can solve for \( a \): \[ a = 1 - e^{-b} \] ### Final Result Thus, we have expressed \( a \) in terms of \( b \): \[ a = 1 - e^{-b} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=0)^(5)(-1)^(k)2k

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Evaluate sum_(k=1)^(11)(2+3^k)

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

If f(x) = sum_(k=2)^(n) (x-(1)/(k-1))(x-(1)/(k)) , then the product of root of f(x) = 0 as n rarr oo , is

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The sum sum_(k=1)^oocot^(-1)(2k^2) equals

Find the sum S = sum _( k =1) ^( 2016) (-1) ^(( (k +1))/(2))k

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)