Home
Class 12
MATHS
If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1...

If `xgt0` then `(x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)/((x+1)^(3))+....=`

A

`log_(e )x `

B

`log_(e )(1//x)`

C

`log_(e )(1+x)`

D

`log_(e )(1-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series: \[ S = \frac{x-1}{x+1} + \frac{1}{2} \cdot \frac{x^2 - 1}{(x+1)^2} + \frac{1}{3} \cdot \frac{x^3 - 1}{(x+1)^3} + \ldots \] we can rewrite each term in the series. ### Step 1: Rewrite the terms The first term can be rewritten as: \[ \frac{x-1}{x+1} = \frac{x}{x+1} - \frac{1}{x+1} \] The second term: \[ \frac{1}{2} \cdot \frac{x^2 - 1}{(x+1)^2} = \frac{1}{2} \left( \frac{x^2}{(x+1)^2} - \frac{1}{(x+1)^2} \right) \] The third term: \[ \frac{1}{3} \cdot \frac{x^3 - 1}{(x+1)^3} = \frac{1}{3} \left( \frac{x^3}{(x+1)^3} - \frac{1}{(x+1)^3} \right) \] Thus, we can express the series \( S \) as: \[ S = \left( \frac{x}{x+1} + \frac{x^2}{2(x+1)^2} + \frac{x^3}{3(x+1)^3} + \ldots \right) - \left( \frac{1}{x+1} + \frac{1}{2(x+1)^2} + \frac{1}{3(x+1)^3} + \ldots \right) \] ### Step 2: Identify the series The first part of the series can be recognized as: \[ \sum_{n=1}^{\infty} \frac{x^n}{n(x+1)^n} \] This is the series representation for \(-\log(1 - t)\) where \(t = \frac{x}{x+1}\). Thus, \[ \sum_{n=1}^{\infty} \frac{x^n}{n(x+1)^n} = -\log\left(1 - \frac{x}{x+1}\right) = -\log\left(\frac{1}{x+1}\right) = \log(x+1) \] ### Step 3: Evaluate the second part of the series The second part is: \[ \sum_{n=1}^{\infty} \frac{1}{n(x+1)^n} = -\log\left(1 - \frac{1}{x+1}\right) = -\log\left(\frac{x}{x+1}\right) = \log(x+1) - \log(x) \] ### Step 4: Combine the results Now, combining both parts: \[ S = \log(x+1) - \left(\log(x+1) - \log(x)\right) \] This simplifies to: \[ S = \log(x) \] ### Conclusion Thus, the final result is: \[ S = \log_e x \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1)/(x+1)^(3) +…is equal to

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x^(3)- (1)/(x^(3))

Solve (2)/(x^2-x+1)-(1)/(x+1)-(2x-1)/(x^3+1) ge 0.

Solve (2)/(x^2-x+1)-(1)/(x+1)-(2x-1)/(x^3+1) ge 0.

If xgt0 prove that x+ 1/x ge2

Simplify : (x^((1)/(3)) - x^(-(1)/(3)))(x^((2)/(3)) +1+x^(-(2)/(3)))

4/(x-1)le3le6/(x+1)(xgt0)

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}