Home
Class 12
MATHS
(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)...

`(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….`

A

4 log3

B

log3

C

`(1)/(2)`log5/3

D

`(1)/(2)`log3/5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the infinite series \[ S = \frac{1}{4} + \frac{1}{3} \left(\frac{1}{4}\right)^3 + \frac{1}{5} \left(\frac{1}{4}\right)^5 + \ldots \] we can recognize that this series can be expressed in a more general form. ### Step 1: Rewrite the Series The series can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{1}{n+2} \left(\frac{1}{4}\right)^{2n-1} \] This is because the first term corresponds to \(n=1\), the second term corresponds to \(n=2\), and so on. ### Step 2: Identify the Series Type This series resembles the Taylor series expansion of the logarithmic function. We know that: \[ \frac{1}{2} \log \left(\frac{1+x}{1-x}\right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots \] for \(|x| < 1\). ### Step 3: Substitute \(x\) In our case, we can set \(x = \frac{1}{4}\). Thus, we can write: \[ \frac{1}{2} \log \left(\frac{1+\frac{1}{4}}{1-\frac{1}{4}}\right) = \frac{1}{2} \log \left(\frac{\frac{5}{4}}{\frac{3}{4}}\right) \] ### Step 4: Simplify the Logarithm Now simplify the logarithm: \[ \frac{1}{2} \log \left(\frac{5}{3}\right) \] ### Step 5: Conclusion Thus, the value of the infinite series \(S\) is: \[ S = \frac{1}{2} \log \left(\frac{5}{3}\right) \] ### Final Answer The final answer is: \[ S = \frac{1}{2} \log \left(\frac{5}{3}\right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=

(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

(1+1/3.(1)/(2^(2))+1/5.(1)/(2^(4))+1/7(1)/2^(6)+…..oo) =

Evaluate : (1)/(3!)+(1)/(4!)+(1)/(5!)

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....