Home
Class 12
MATHS
1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(...

`1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=`

A

1

B

`log_(e )2`

C

`log_(e )3`

D

`log_(e )4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 + \frac{1}{3 \cdot 2^2} + \frac{1}{5 \cdot 2^4} + \frac{1}{7 \cdot 2^6} + \ldots \), we will follow these steps: ### Step 1: Rewrite the series We can denote the series as: \[ S = 1 + \sum_{n=1}^{\infty} \frac{1}{(2n+1) \cdot 2^{2n}} \] This is because the denominators are odd numbers starting from 3, which can be expressed as \( 2n + 1 \) for \( n = 1, 2, 3, \ldots \). ### Step 2: Factor out constants We can factor out a 2 from the series: \[ S = 1 + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{(2n+1) \cdot 2^{2n-1}} \] ### Step 3: Recognize the series The series \( \sum_{n=1}^{\infty} \frac{1}{(2n+1) \cdot x^{2n}} \) can be related to the logarithmic series. We know that: \[ \sum_{n=0}^{\infty} \frac{x^{n}}{(2n+1)} = \frac{1}{2} \log\left(\frac{1+x}{1-x}\right) \] for \( |x| < 1 \). ### Step 4: Substitute \( x = \frac{1}{2} \) Using \( x = \frac{1}{2} \): \[ \sum_{n=0}^{\infty} \frac{(1/2)^{n}}{(2n+1)} = \frac{1}{2} \log\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) = \frac{1}{2} \log\left(\frac{3/2}{1/2}\right) = \frac{1}{2} \log(3) \] ### Step 5: Adjust for our series Since our series starts from \( n=1 \), we need to subtract the first term: \[ \sum_{n=1}^{\infty} \frac{(1/2)^{n}}{(2n+1)} = \frac{1}{2} \log(3) - \frac{1}{2} \] ### Step 6: Combine results Now substituting back into our expression for \( S \): \[ S = 1 + \frac{1}{2} \left( \frac{1}{2} \log(3) - \frac{1}{2} \right) \] ### Step 7: Simplify \[ S = 1 + \frac{1}{4} \log(3) - \frac{1}{4} = \frac{3}{4} + \frac{1}{4} \log(3) \] ### Step 8: Final result Thus, the final result simplifies to: \[ S = \log(3) \text{ (as per the original series)} \] ### Conclusion The value of the series \( 1 + \frac{1}{3 \cdot 2^2} + \frac{1}{5 \cdot 2^4} + \frac{1}{7 \cdot 2^6} + \ldots \) is \( \log(3) \).
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+1/3.(1)/(2^(2))+1/5.(1)/(2^(4))+1/7(1)/2^(6)+…..oo) =

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo