Home
Class 12
MATHS
If 0ltylt2^(1//3) and x(y^(3)-1)=1 then ...

If `0ltylt2^(1//3)` and `x(y^(3)-1)=1` then
`(2)/(x)+(2)/(3x^(3))+(2)/(5x^(5))`+…=

A

`log((y^(3))/(2-y^(3)))`

B

`log((y^(3))/(1-y^(3)))`

C

`log((2y^(3))/(1-y^(3)))`

D

`log((y^(3))/(1-2y^(3)))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

If y= "tan"^(-1) (4x)/(1+5x^(2)) + "tan"^(-1) (2 + 3x)/(3-2x) , then prove that (dy)/(dx)= (5)/(1+25x^(2))

If x^3-2x^2y^2+5x+y-5=0 and y(1)=1 , then (a) y^(prime)(1)=4/3 (b) y'(1)=-4/3 (c) y''(1)=-8(22)/(27) (d) y^(prime)(1)=2/3

Solve for : 2/(x+1)+3/(2(x-2))=(23)/(5x);x!=0,-1,2

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

The image of the line (x-1)/3=(y-3)/1=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1) (x+3)/3=(y-5)/1=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/5 (3) (x-3)/3=(y+5)/1=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/5

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)