Home
Class 12
MATHS
sum(n=1)^(oo)(1)/(2n-1)*x^(2n)=...

`sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=`

A

a) `(x)/(2)log((1+x)/(1-x))^(x)`

B

b) `(1)/(2)log((1+x^(2))/(1-x^(2)))`

C

c) `x"log"(1+x)/(1-x)`

D

d) `(x)/(2)log((1+x)/(1-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n} \), we will follow these steps: ### Step 1: Rewrite the Series We start with the series: \[ S = \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n} \] This can be expressed as: \[ S = x^2 + \frac{x^4}{3} + \frac{x^6}{5} + \cdots \] ### Step 2: Factor Out \( x^2 \) Notice that each term in the series has a factor of \( x^2 \): \[ S = x^2 \left( 1 + \frac{x^2}{3} + \frac{x^4}{5} + \cdots \right) \] ### Step 3: Recognize the Series as a Logarithmic Series The series inside the parentheses can be related to the logarithmic series. Recall the series expansion for \( \log(1+x) \): \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \] And for \( \log(1-x) \): \[ \log(1-x) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots \right) \] ### Step 4: Combine the Logarithmic Series Now, we can combine these two logarithmic series: \[ \log(1+x) - \log(1-x) = \left( x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \right) - \left( -x - \frac{x^2}{2} - \frac{x^3}{3} - \cdots \right) \] This simplifies to: \[ \log(1+x) - \log(1-x) = 2x + \frac{2x^3}{3} + \frac{2x^5}{5} + \cdots \] ### Step 5: Relate to the Original Series From the above, we can see that: \[ \log(1+x) - \log(1-x) = 2 \left( x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots \right) \] Thus, we have: \[ S = x^2 \cdot \frac{1}{2} \left( \log(1+x) - \log(1-x) \right) \] ### Step 6: Final Expression Therefore, we can express \( S \) as: \[ S = \frac{x^2}{2} \log\left(\frac{1+x}{1-x}\right) \] ### Conclusion Thus, the final result for the series is: \[ \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n} = \frac{x}{2} \log\left(\frac{1+x}{1-x}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt y lt 1 , then sum_(n=1)^(oo)(1)/(2n-1)*y^(n+1)=……

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

If agt0 , then sum_(n=1)^(oo) ((a)/(a+1))^(n) equals

The value of sum sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2)) is equal to

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

The expression sum_(n=1)^(oo)cot^(-1)(n^(2)-3n+3) simplifies to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to _______.

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =