Home
Class 12
MATHS
log5-(log25)/(2^(2))+(log125)/(3^(2))-(l...

`log5-(log25)/(2^(2))+(log125)/(3^(2))-(log625)/(4^(2))+ ……`

A

log 2

B

log5

C

log`2**(log5)`

D

log 10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log 5 - \frac{\log 25}{2^2} + \frac{\log 125}{3^2} - \frac{\log 625}{4^2} + \ldots \), we can follow these steps: ### Step 1: Rewrite the logarithmic terms We can express the logarithmic terms in a simpler form: - \( \log 25 = \log(5^2) = 2 \log 5 \) - \( \log 125 = \log(5^3) = 3 \log 5 \) - \( \log 625 = \log(5^4) = 4 \log 5 \) Thus, we can rewrite the expression as: \[ \log 5 - \frac{2 \log 5}{2^2} + \frac{3 \log 5}{3^2} - \frac{4 \log 5}{4^2} + \ldots \] ### Step 2: Factor out \( \log 5 \) Now, we can factor out \( \log 5 \) from the entire expression: \[ \log 5 \left( 1 - \frac{2}{4} + \frac{3}{9} - \frac{4}{16} + \ldots \right) \] This simplifies to: \[ \log 5 \left( 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \right) \] ### Step 3: Identify the series The series inside the parentheses is: \[ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \] This is the alternating series for \( \log(1 + x) \) evaluated at \( x = 1 \): \[ \log(1 + 1) = \log 2 \] ### Step 4: Substitute back into the expression Now we can substitute back: \[ \log 5 \cdot \log 2 \] ### Final Answer Thus, the value of the original expression is: \[ \log 2 \cdot \log 5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

((log_(100)10)(log_(2)(log_(4)2))(log_(4)log_(2)^(2)(256)^(2)))/(log_(4)8+log_(8)4)=

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

((log_(100)10)(log_(2)(log_(4)2))(log_(4)log_((2)^(2))(256)^(2)))/(log_(4)8+log_(8)4)=

Which of the following when simplified, vanishes? a. 1/((log)_3 2)+2/((log)_9 4)-3/((log)_(27)8) b. (log)_2(2/3)+(log)_4(9/4) c. -(log)_8(log)_4(log)_2 16 d. (log)_(10)cot1^0+\ (log)_(10)cot2^0+(log)_(10)cot3^0++(log)_(10)cot89^0

Which of the following when simplified reduces to unity? (log)_(3/2)(log)_4(log)_(sqrt(3))81 (log)_2 6+(log)_2sqrt(2/3) -1/6(log)_(sqrt(3/2))((64)/(27)) (d) (log)_(7/2)(1+2-3-:6)

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0 and log_(4)(log_(2)(log_(3)(z))) = 0 then the sum of x,y and z is-

Prove that : (log_(2)10)(log_(2)80)-(log_(2)5)(log_(2)160)=4 .

Which of the following when simplified reduces to an integer? a. (2log6)/(log12+log3) b. (log32)/(log4) c. ((log)_5 15-(log)_5 4)/((log)_5 128) d. (log)_(1//4)(1/(16))^2

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :