Home
Class 12
MATHS
1/2(1/2+1/3)-1/4((1)/(2^(2))+(1)/(3^(2))...

`1/2(1/2+1/3)-1/4((1)/(2^(2))+(1)/(3^(2)))+1/6((1)/(2^(3))+(1)/(3^(3)))+…infty` is equal to

A

`log_(e )3`

B

`(1)/(2)log_(e )2`

C

`(1)/(2)"log"_(e )(3)/(2)`

D

`"log"_(e )(2)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals to

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

(1/(1!)+(1)/(2!)+(1)/(4!)+(1)/(6!)+…)-(1/(1/(1)+(1)/(3!)+(1)/(5!)+…)) is equal to

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

The sum of series (1)^(2)/(1.2!)+(1^(2)+2^(2))/(2.3!)+(1^(2)+2^(2)+3^(2))//(3.4!)+..+(1^(2)+2^(2)+…+n^(2))/(n.(n+1))!+..infty is equals to

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then