Home
Class 12
MATHS
-((4)/(5)+(4^(2))/(5^(2).2)+(4^(3))/(5^(...

`-((4)/(5)+(4^(2))/(5^(2).2)+(4^(3))/(5^(3).3)+(4^(4))/(5^(4).4)+……oo)=`

A

a) `"log"(9)/(5)`

B

b) `"log"(4)/(5)`

C

c) `log((5)/(4))`

D

d) `"log"(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series: \[ - \left( \frac{4}{5} + \frac{4^2}{5^2 \cdot 2} + \frac{4^3}{5^3 \cdot 3} + \frac{4^4}{5^4 \cdot 4} + \ldots \right) \] we can recognize that this series resembles the Taylor series expansion for the logarithm function. Let's break it down step-by-step. ### Step 1: Identify the series The series can be rewritten as: \[ - \sum_{n=1}^{\infty} \frac{4^n}{5^n \cdot n} \] ### Step 2: Factor out common terms We can factor out \(\frac{4}{5}\) from the series: \[ - \sum_{n=1}^{\infty} \frac{(4/5)^n}{n} \] ### Step 3: Recognize the series as a logarithm The series \(\sum_{n=1}^{\infty} \frac{x^n}{n}\) is known to converge to \(-\log(1-x)\) for \(|x| < 1\). Here, we have \(x = \frac{4}{5}\): \[ \sum_{n=1}^{\infty} \frac{(4/5)^n}{n} = -\log(1 - \frac{4}{5}) = -\log(\frac{1}{5}) \] ### Step 4: Substitute back into the expression Now substituting this back into our expression, we have: \[ - \left(-\log(\frac{1}{5})\right) = \log(\frac{1}{5}) \] ### Final Answer Thus, the value of the original series is: \[ \log(\frac{1}{5}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite series, 1 ^(2) -(2^(2))/(5) + (3 ^(2))/(5 ^(2))+ (4^(2))/(5 ^(3))+ (5 ^(2))/(5 ^(4))-(6 ^(2))/(5 ^(5)) + ..... is:

Simplify : a. 15^(7)-:5^(3) b. ((5^(4))^(3)xx2^(12))/(3^(12)) c. ((4^(3))^(2)xx5^(6))/(10^(6)) d. (2xx3^(4)xx2^(5))/(9xx4^(2)) e. (2^(2)xx3^(4)xx16)/(3^(2)xx32) f. (4^(5)xxa^(8)xxb^(16))/(4^(4)xxa^(7)xxb^(4))

Which of the following is not equal to ((-3)/5)^4? (a) ((-3)^4)/(5^4) (b) (3^4)/((-5)^4) (c) -(3^4)/(5^4) (d) (-3)/5xx(-3)/5xx(-3)/5xx(-3)/5

2 (3)/(5) + 1 (4)/(5) + 3 (2)/(5

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….

The sum of the series (x^(2))/(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+….=

Evaluate : a. 6^(3)-:6^(3) b. 5^(4)-:5^(4) c. (-3)^(5)-:(-3)^(5) d. ((3)/(5))^(4)-:((3)/(5))^(4)

The sum of the series (9)/(5^(2)*2*1)+(13)/(5^(3)*3*2)+(17)/(5^(4)*4*3)+... upto infinity

The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3)x^(3))/(3!)+(a^(5)x^(5))/(5!)+..)^(2) is