Home
Class 12
MATHS
y=(x^(3)+(x^(6))/(2)+(x^(9))/(3)+……) the...

`y=(x^(3)+(x^(6))/(2)+(x^(9))/(3)+……)` then

A

`x^(3)=1-e^(-y)`

B

`x=log(x+y)`

C

`x^(3)=e^(y)`

D

`x=1+e^(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of \( y \) defined by the series: \[ y = x^3 + \frac{x^6}{2} + \frac{x^9}{3} + \ldots \] ### Step 1: Identify the series The series can be rewritten in a more general form. Notice that the terms are of the form: \[ y = \sum_{n=1}^{\infty} \frac{x^{3n}}{n} \] ### Step 2: Recognize the series as a logarithmic series The series \(\sum_{n=1}^{\infty} \frac{x^n}{n}\) is known to converge to \(-\log(1-x)\) for \(|x| < 1\). Therefore, we can relate our series to this known result. ### Step 3: Substitute \(x^3\) into the logarithmic series By substituting \(x^3\) into the logarithmic series, we have: \[ y = \sum_{n=1}^{\infty} \frac{(x^3)^n}{n} = -\log(1 - x^3) \] ### Step 4: Solve for \(y\) Thus, we can express \(y\) as: \[ y = -\log(1 - x^3) \] ### Step 5: Exponentiate both sides To eliminate the logarithm, we exponentiate both sides: \[ e^{-y} = 1 - x^3 \] ### Step 6: Rearranging the equation Rearranging gives us: \[ x^3 = 1 - e^{-y} \] ### Conclusion This means that the relationship we derived is: \[ x^3 + e^{-y} = 1 \] ### Final Answer Thus, the final expression for \(y\) in terms of \(x\) is: \[ e^{-y} = 1 - x^3 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(x^(9)+x^(6)+x^(3))(2x^(6)+3x^(3)+6)^(1//3)dx=a(2x^(9)+3x^(6)+6x^(3))^(4//3)+c then the value of 48a must be _______

If x=4 and y=1, find the value of ((x)/(2)-(y)/(3))((x^(2))/(4)+(xy)/(6)+(y^(2))/(9)) .

If y=3 x + 6 x^(2) + 10 x^(3) +… then x =

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

If int (x^9+x^6+x^3)(2x^6+3x^3+6)^(1/3) dx=1/a(2x^9+3x^6+6x^3)^(4/3)+c , then 'a' is equal to:

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

If f(x) f(x) ={((x^2-9)/(x-3)","" " xne3),(" 6""," " "x = 3"):} then show that f(x) is continuous at x=3.