Home
Class 12
MATHS
Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))...

Find `(1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?`

A

`log_(e )2-log_(e )3`

B

`log_(e )3-log_(e )2`

C

`log_(e )6`

D

`log_(e )3-log_(e )4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the series \[ S = \frac{1}{3} + \frac{1}{2 \cdot 3^2} + \frac{1}{3 \cdot 3^3} + \frac{1}{4 \cdot 3^4} + \ldots \] we can express the series in a more manageable form. ### Step 1: Rewrite the series We can rewrite the series as follows: \[ S = \sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n} \] ### Step 2: Relate to the logarithmic series We know that the series \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) \] for \(|x| < 1\). By differentiating both sides with respect to \(x\), we get: \[ \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x} \] Multiplying both sides by \(x\): \[ \sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2} \] ### Step 3: Find the series we need Now, we can relate our series to the logarithmic series. We have: \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) \] If we differentiate this with respect to \(x\): \[ \sum_{n=1}^{\infty} n x^{n-1} = -\frac{1}{1-x} \] Now, if we multiply by \(x\): \[ \sum_{n=1}^{\infty} n x^n = -\frac{x}{(1-x)^2} \] ### Step 4: Substitute \(x = \frac{1}{3}\) Now, substituting \(x = \frac{1}{3}\): \[ \sum_{n=1}^{\infty} n \left(\frac{1}{3}\right)^n = -\frac{\frac{1}{3}}{\left(1 - \frac{1}{3}\right)^2} = -\frac{\frac{1}{3}}{\left(\frac{2}{3}\right)^2} = -\frac{\frac{1}{3}}{\frac{4}{9}} = -\frac{3}{4} \] ### Step 5: Relate back to our series Now, we have: \[ \sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n} = -\ln\left(1 - \frac{1}{3}\right) = -\ln\left(\frac{2}{3}\right) \] Using the property of logarithms: \[ -\ln\left(\frac{2}{3}\right) = \ln\left(\frac{3}{2}\right) \] ### Final Result Thus, we find that: \[ S = \ln\left(\frac{3}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

If ((3(1)/(4) )^(4) -(4( 1)/(3))^(4))/( (3,(1)/(4) )^(2) -(4,(1)/(3))^(2) )= ((13a)/(12))^(2) , find a.

-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=

If A is the matrix [(1,-3),(-1,1)] , then A-(1)/(3)A^(2)+(1)/(9)A^(3)……….. +(-(1)/(3))^(n)A^(n+1)+ ……… oo=(3)/(13)[(1,a), (b,1)] . Find |(a)/(b)| .

Value of (1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))........oo is equal to a. 3 b. 6/5 c. 3/2 d. none of these