Home
Class 12
MATHS
(x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)...

`(x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=`

A

`log(1+x)`

B

`log(1-x)`

C

`log x`

D

`log((1)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series given in the question, we need to analyze the expression: \[ S = \frac{x}{x+1} + \frac{1}{2}\left(\frac{x}{x+1}\right)^{2} + \frac{1}{3}\left(\frac{x}{x+1}\right)^{3} + \ldots \] This series can be recognized as a power series in the form of: \[ S = \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{x}{x+1}\right)^{n} \] This series resembles the Taylor series expansion for \(-\log(1 - u)\), which is given by: \[ -\log(1 - u) = \sum_{n=1}^{\infty} \frac{u^{n}}{n} \] for \(|u| < 1\). ### Step 1: Identify \(u\) In our case, we can identify \(u\) as: \[ u = \frac{x}{x+1} \] ### Step 2: Substitute \(u\) into the logarithmic series Thus, we can rewrite the series \(S\) as: \[ S = -\log\left(1 - \frac{x}{x+1}\right) \] ### Step 3: Simplify the logarithmic expression Now, simplify the expression inside the logarithm: \[ 1 - \frac{x}{x+1} = \frac{x+1 - x}{x+1} = \frac{1}{x+1} \] ### Step 4: Substitute back into the logarithm Now substituting this back into our expression for \(S\): \[ S = -\log\left(\frac{1}{x+1}\right) \] ### Step 5: Simplify the logarithm Using the property of logarithms, we can simplify this further: \[ S = \log(x+1) \] ### Conclusion Thus, the final result for the series is: \[ S = \log(x+1) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)/((x+1)^(3))+....=

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1)/(x+1)^(3) +…is equal to

If x is positive, the sum to infinity of the series 1/(1+x)-(1-x)/((1+x)^2)+(1-x) ^2/((1+x)^3)-(1-x)^3/((1+x)^4)+....... i s (a)1/2 (b) 3/4 (c) 1 (d) none of these

intdx/(x^(1/2)+x^(1/3)+x^(2/3))

The sum of the sereis 1+2^2x+3^2x^2+4^2x^3+…..oo where -1ltxlt1= (A) (1+x)/((1-x))^3 (B) x/((1+x)^3) (C) (1-x^2)/((1+x)^3) (D) none of these

If (x^(4))/((x-1)(x+2))=(1)/(3(x-1))-(16)/(3(x+2))+x^(2)-x+k then k=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

Cofficient of x^4 in 1+(1+x+x^2)/(1!) +((1+x+x^2)^2)/(2!) +((1+x+x^2)^3)/(3!) + ....oo =