Home
Class 12
MATHS
If higher powers of x^(2) are neglected,...

If higher powers of `x^(2)` are neglected, then the value of `log(1+x^(2))-log(1+x)-log(1-x)=`

A

`x^(2)`

B

`(1)/(2)x^(2)`

C

`2x^(2)`

D

`3x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \log(1+x^2) - \log(1+x) - \log(1-x) \) while neglecting higher powers of \( x^2 \), we can use the Taylor series expansion for logarithmic functions. ### Step-by-Step Solution: 1. **Use the logarithmic identity**: \[ \log(a) - \log(b) = \log\left(\frac{a}{b}\right) \] Therefore, we can rewrite the expression: \[ \log(1+x^2) - \log(1+x) - \log(1-x) = \log\left(\frac{1+x^2}{(1+x)(1-x)}\right) \] 2. **Simplify the denominator**: The denominator can be simplified using the difference of squares: \[ (1+x)(1-x) = 1 - x^2 \] Thus, we have: \[ \log\left(\frac{1+x^2}{1-x^2}\right) \] 3. **Expand using Taylor series**: We can use the Taylor series expansion for \( \log(1+y) \): \[ \log(1+y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \cdots \] Applying this to \( \log(1+x^2) \) and \( \log(1-x^2) \): - For \( \log(1+x^2) \): \[ \log(1+x^2) \approx x^2 - \frac{x^4}{2} \quad \text{(neglecting higher powers)} \] - For \( \log(1-x^2) \): \[ \log(1-x^2) \approx -x^2 - \frac{(-x^2)^2}{2} = -x^2 + \frac{x^4}{2} \quad \text{(neglecting higher powers)} \] 4. **Combine the expansions**: Now, substituting these expansions back into our expression: \[ \log(1+x^2) - \log(1-x^2) \approx \left(x^2 - \frac{x^4}{2}\right) - \left(-x^2 + \frac{x^4}{2}\right) \] Simplifying this gives: \[ x^2 - \frac{x^4}{2} + x^2 - \frac{x^4}{2} = 2x^2 - x^4 \] 5. **Neglect higher powers**: Since we are neglecting higher powers of \( x^2 \), we ignore the \( -x^4 \) term: \[ \approx 2x^2 \] ### Final Answer: Thus, the value of \( \log(1+x^2) - \log(1+x) - \log(1-x) \) is: \[ \boxed{2x^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x, log_(1/2)x >= log_(1/3)x is

(1+log x)^(2)/(x)

(log x)^(log x),x gt1

f(x) = log(x^(2)+2)-log3 in [-1,1]

2log x-log(x+1)-log(x-1) is equals to

If 0ltxlt1 , prove that: log(1+x)+log(1+x^2)+log(1+x^4)+… oo=-log(1-x)

Statemen-1: If x lt 1 , then the least value of "log"_(2)x^(3) - "log"_(x) (0.125)" is "6 .

The value of int x log x (log x - 1) dx is equal to

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

If log2,log(2^x-1),log(2^x+3) are in A.P., write the value of xdot