Home
Class 12
MATHS
If (1)/(n+1)+(1)/(2(n+1)^(2))+(1)/(3(n+1...

If `(1)/(n+1)+(1)/(2(n+1)^(2))+(1)/(3(n+1)^(3))+….=`
`lambda((1)/(n)-(1)/(2n^(2))+(1)/(3n^(3))-……)` then `lambda=`

A

2

B

`n+1`

C

1

D

n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the infinite series given on the left-hand side and relate it to the series on the right-hand side, which involves the logarithmic functions. Let's break it down step by step. ### Step 1: Identify the Left-Hand Side Series The left-hand side of the equation is: \[ S = \frac{1}{n+1} + \frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^3} + \ldots \] This series can be expressed in terms of the logarithmic function. ### Step 2: Recognize the Series as a Logarithm We can relate this series to the logarithmic series: \[ \log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots \] If we let \( x = \frac{1}{n+1} \), then: \[ \log(1 + \frac{1}{n+1}) = \frac{1}{n+1} - \frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^3} - \ldots \] Thus, the left-hand side can be written as: \[ S = -\log\left(1 - \frac{1}{n+1}\right) \] ### Step 3: Simplify the Logarithmic Expression Now, simplifying the logarithm: \[ -\log\left(1 - \frac{1}{n+1}\right) = -\log\left(\frac{n}{n+1}\right) = \log\left(\frac{n+1}{n}\right) \] ### Step 4: Analyze the Right-Hand Side Series The right-hand side of the equation is: \[ \lambda\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \ldots\right) \] This series can also be related to the logarithmic function: \[ \log(1 + \frac{1}{n}) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \ldots \] ### Step 5: Set the Two Sides Equal Now we can equate both sides: \[ \log\left(\frac{n+1}{n}\right) = \lambda \log\left(1 + \frac{1}{n}\right) \] ### Step 6: Simplify the Equation We know that: \[ \log\left(\frac{n+1}{n}\right) = \log\left(1 + \frac{1}{n}\right) \] Thus, we can write: \[ \log\left(1 + \frac{1}{n}\right) = \lambda \log\left(1 + \frac{1}{n}\right) \] ### Step 7: Solve for \(\lambda\) Since the logarithmic terms are equal, we can divide both sides by \(\log\left(1 + \frac{1}{n}\right)\) (assuming it is not zero): \[ 1 = \lambda \] Thus, we find: \[ \lambda = 1 \] ### Final Answer Therefore, the value of \(\lambda\) is: \[ \lambda = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+………+C_(n)x^(n) AA n in N and (C_(0)^(2))/(1)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+……..+(C_(n)^(2))/(n+1)=(lambda(2n+1)!)/((n+1)!)^(2), then the vlaue of lambda is equal to

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

1+n. (2n)/(1+n)+(n(n+1))/(1.2) ((2n)/(1+n))^2+…..

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)

If ((2n+1),(0))+ ((2n+1),(3)) +((2n+1),(6))+ ...= 170, then n equals

If (1 ^(2) - t _(1)) + (2 ^(2) - t _(2)) + ......+ ( n ^(2) - t _(n)) =(1)/(3) n ( n ^(2) -1 ), then t _(n) is