Home
Class 12
MATHS
2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (...

`2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …]` is equal to ,

A

`log_(e )x`

B

`log_(e )((1)/(x))`

C

`log_(e ) ((x+1)/(x))`

D

`log_(e )((x-1)/(x ))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int((1)/(5)-(2)/(x^5)+2x)dx is equal to …

lim_(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

(v) 1 2/3 x 1 3/5 is equal to

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

If l=int((2x-3)^(1/2))/((2x-3)^(1/3)+1)dx=3[(1)/(7)(2x-3)^(7/6)-(1)/(5)(2x-3)^(5/6)+(1)/(3)(2x-3)^(1/2)-(2x-3)^(1/6)+g(x)]+c then g(x) is equal to

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx

lim_(x rarr1)(1)/((x-1))((1)/(x+3)-(2)/(3x+5))

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

Prove that : (log)_e((x+1)/x)=2[1/((2x+1))+1/(3(2x+1)^3)+1/(5(2x+1)^5)+]