Home
Class 12
MATHS
2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))...

`2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=`

A

a) `log_(e )((x+1)/(x-1))`

B

b)`log_(e )((x-1)/(x+1))`

C

c) `log_(e )((1)/(x-1))`

D

d) `log_(e )((1)/(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series: \[ 2\left(\frac{2x}{x^2 + 1} + \frac{1}{3}\left(\frac{2x}{x^2 + 1}\right)^3 + \frac{1}{5}\left(\frac{2x}{x^2 + 1}\right)^5 + \ldots\right) \] ### Step 1: Recognize the Series Structure The series can be recognized as a Taylor series expansion of logarithmic functions. Specifically, we can relate it to the series for \(\log(1+x)\) and \(\log(1-x)\). ### Step 2: Write Down the Logarithmic Series The Taylor series expansions for \(\log(1+x)\) and \(\log(1-x)\) are: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \ldots \] \[ \log(1-x) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \ldots\right) \] ### Step 3: Combine the Series To find a series that includes only odd powers, we can subtract the two series: \[ \log(1+x) - \log(1-x) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right) \] This results in: \[ \log\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right) \] ### Step 4: Substitute \(x\) in the Series In our case, we can set \(x = \frac{2x}{x^2 + 1}\). Thus, we need to evaluate: \[ \log\left(\frac{1 + \frac{2x}{x^2 + 1}}{1 - \frac{2x}{x^2 + 1}}\right) \] ### Step 5: Simplify the Expression To simplify the expression, we need to find a common denominator: \[ \frac{1 + \frac{2x}{x^2 + 1}}{1 - \frac{2x}{x^2 + 1}} = \frac{\frac{(x^2 + 1) + 2x}{x^2 + 1}}{\frac{(x^2 + 1) - 2x}{x^2 + 1}} = \frac{x^2 + 2x + 1}{x^2 - 2x + 1} = \frac{(x + 1)^2}{(x - 1)^2} \] ### Step 6: Apply the Logarithm Now, we can apply the logarithm: \[ \log\left(\frac{(x + 1)^2}{(x - 1)^2}\right) = 2\log\left(\frac{x + 1}{x - 1}\right) \] ### Step 7: Multiply by 2 Finally, we multiply the entire expression by 2: \[ 2 \cdot 2\log\left(\frac{x + 1}{x - 1}\right) = 4\log\left(\frac{x + 1}{x - 1}\right) \] ### Final Answer Thus, the final answer is: \[ \boxed{4\log\left(\frac{x + 1}{x - 1}\right)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

(x^2-1)/(2x+5)<3

(x^2-1)/(2x+5)<3

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

5. int(1)/(3x^(2)+2x+1)dx

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).