Home
Class 12
MATHS
x=(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+…....

`x=(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+…..`
`y=(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+….`
`z=1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+…..`
Then descending order of x, y, z

A

a) z, y, x

B

b) z, x, y

C

c) x, y, z

D

d) y, z, x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series \( x \), \( y \), and \( z \) and then compare their values to determine the descending order. ### Step 1: Evaluate \( x \) The series for \( x \) is given by: \[ x = \frac{1}{3} + \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} + \ldots \] This can be expressed in terms of a logarithmic series. We can use the formula: \[ \log\left(\frac{1+x}{1-x}\right) = 2x + \frac{2x^3}{3} + \frac{2x^5}{5} + \ldots \] By substituting \( x = \frac{1}{3} \): \[ x = \frac{1}{2} \log\left(\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}}\right) = \frac{1}{2} \log\left(\frac{\frac{4}{3}}{\frac{2}{3}}\right) = \frac{1}{2} \log(2) \] ### Step 2: Evaluate \( y \) The series for \( y \) is given by: \[ y = \frac{1}{5} + \frac{1}{3 \cdot 5^3} + \frac{1}{5 \cdot 5^5} + \ldots \] Using the same logarithmic series formula and substituting \( x = \frac{1}{5} \): \[ y = \frac{1}{2} \log\left(\frac{1 + \frac{1}{5}}{1 - \frac{1}{5}}\right) = \frac{1}{2} \log\left(\frac{\frac{6}{5}}{\frac{4}{5}}\right) = \frac{1}{2} \log\left(\frac{3}{2}\right) \] ### Step 3: Evaluate \( z \) The series for \( z \) is given by: \[ z = 1 + \frac{1}{3 \cdot 2^2} + \frac{1}{5 \cdot 2^4} + \frac{1}{7 \cdot 2^6} + \ldots \] Using the logarithmic series formula and substituting \( x = \frac{1}{2} \): \[ z = \log\left(\frac{1 + \frac{1}{2}}{1 - \frac{1}{2}}\right) = \log\left(\frac{\frac{3}{2}}{\frac{1}{2}}\right) = \log(3) \] ### Step 4: Compare the values Now we have: - \( x = \frac{1}{2} \log(2) \) - \( y = \frac{1}{2} \log\left(\frac{3}{2}\right) \) - \( z = \log(3) \) Next, we need to compare these values. We know that: - \( \log(2) \approx 0.3010 \) - \( \log\left(\frac{3}{2}\right) \approx 0.1761 \) - \( \log(3) \approx 0.4771 \) Calculating: - \( x \approx \frac{1}{2} \cdot 0.3010 \approx 0.1505 \) - \( y \approx \frac{1}{2} \cdot 0.1761 \approx 0.08805 \) - \( z \approx 0.4771 \) ### Step 5: Determine the descending order From the calculations: - \( z \) is the largest, - followed by \( x \), - and then \( y \). Thus, the descending order is: \[ z > x > y \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

The lines (x-1)/(3) = (y+1)/(2) = (z-1)/(5) and x= (y-1)/(3) = (z+1)/(-2)

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

Simplify (i) 2^(2/3). 2^(1/3) (ii) (3^(1/5))^4 (iii) (7^(1/5))/(7^(1/3)) (iv) 13^(1/5). 17^(1/5)

If x=(1)/(5)+(1.3)/(5.10)+(1.3.5)/(5.10.15)+….oo then find 3x^(2)+6x.

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

Show that 1 + 1/2.(3/5) + (1.3)/(2.4) (3/5)^2 + (1.3.5)/(2.4.6) (3/5)^3 + …… = sqrt([5/2])

Find the angle between the two lines: (x+1)/(2) = (y-2)/(5) = (z+3)/(4) and (x-1)/(5) = (y+2)/(2) = (z-1)/(-5)