Home
Class 12
MATHS
Statement-I : (1)/(1.2)+(1)/(2.2^(2))+(1...

Statement-I : `(1)/(1.2)+(1)/(2.2^(2))+(1)/(3.2^(3))+….oo=log_(e )1//2`
Statement-II : `((1)/(5)+(1)/(7))+(1)/(3)((1)/(5^(3))+(1)/(7^(3)))+(1)/(5)((1)/(5^(5))+(1)/(7^(5)))+….+oo=(1)/(2)log2`
Which of the above is true

A

Only I

B

Only II

C

both I & II

D

neither I nor II

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements, we will analyze each statement separately and verify their correctness. ### Statement I: The series given is: \[ S_1 = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \ldots \] We can express this series in a more general form: \[ S_1 = \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n} \] To evaluate this series, we can use the known result: \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) \quad \text{for } |x| < 1 \] Differentiating both sides with respect to \(x\): \[ \sum_{n=1}^{\infty} n x^{n-1} = \frac{1}{1-x} \] Multiplying by \(x\): \[ \sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2} \] Now, we can express our series: \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) \implies \sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n} = -\frac{1}{2} \ln(1 - \frac{x}{2}) \] Setting \(x = 1\): \[ S_1 = -\frac{1}{2} \ln(1 - \frac{1}{2}) = -\frac{1}{2} \ln(\frac{1}{2}) = \frac{1}{2} \ln(2) \] Thus, Statement I is true: \[ S_1 = \frac{1}{2} \ln(2) \] ### Statement II: The series given is: \[ S_2 = \left(\frac{1}{5} + \frac{1}{7}\right) + \frac{1}{3}\left(\frac{1}{5^3} + \frac{1}{7^3}\right) + \frac{1}{5}\left(\frac{1}{5^5} + \frac{1}{7^5}\right) + \ldots \] We can separate the series into two parts: \[ S_2 = \sum_{n=0}^{\infty} \frac{1}{(2n+1)5^{2n+1}} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)7^{2n+1}} \] Using the known series expansion: \[ \sum_{n=0}^{\infty} \frac{x^n}{n} = -\ln(1-x) \] We can rewrite: \[ S_2 = \frac{1}{2} \left( \ln\left(\frac{1 + \frac{1}{5}}{1 - \frac{1}{5}}\right) + \ln\left(\frac{1 + \frac{1}{7}}{1 - \frac{1}{7}}\right) \right) \] Calculating each term: \[ \frac{1 + \frac{1}{5}}{1 - \frac{1}{5}} = \frac{6}{4} = \frac{3}{2}, \quad \frac{1 + \frac{1}{7}}{1 - \frac{1}{7}} = \frac{8}{6} = \frac{4}{3} \] Thus: \[ S_2 = \frac{1}{2} \left( \ln\left(\frac{3}{2}\right) + \ln\left(\frac{4}{3}\right) \right) = \frac{1}{2} \ln(2) \] Thus, Statement II is also true: \[ S_2 = \frac{1}{2} \ln(2) \] ### Conclusion: Both statements are true.
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)*(1)/(3^(5))+….))=

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

(1+1/3.(1)/(2^(2))+1/5.(1)/(2^(4))+1/7(1)/2^(6)+…..oo) =

If log_(e )k=2[(3)/(5)+(1)/(3)((3)/(5))^(3)+(1)/(5)((3)/(5))^(5)+….oo] then k =

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Simplify (i) 2^(2/3). 2^(1/3) (ii) (3^(1/5))^4 (iii) (7^(1/5))/(7^(1/3)) (iv) 13^(1/5). 17^(1/5)