Home
Class 12
MATHS
Prove that log(e )((1+x)/(1-x))=2(x+(x^...

Prove that `log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion (A) : The coefficient of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

Prove that : (log)_e((x+1)/x)=2[1/((2x+1))+1/(3(2x+1)^3)+1/(5(2x+1)^5)+]

Prove that : (log)_e((x+1)/x)=2[1/((2x+1))+1/(3(2x+1)^3)+1/(5(2x+1)^5)+]

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

Prove that (2^(log_(2^(1//4))x)-3^(log_(27)(x^(2)+1)^(3))-2x)/(7^(4log_(49)x)-x-1)gt0,AAx in(0,oo) .

Let x and a be positive real numbers Statement 1: The sum of theries 1+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+(log_(e)x)^(2)+…to infty is x Statement2: The sum of the series 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)x))^(2)+(x^(3))/(3!)(log_(e)a)^(3)/(3!)+to infty is a^(x)

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in