Home
Class 12
MATHS
Find (x)/(1.2)+(x^(2))/(2.3)+(x^(3))/(3....

Find `(x)/(1.2)+(x^(2))/(2.3)+(x^(3))/(3.4)+....=`

A

`1+(1-x)/(x)log(1-x)`

B

`(1-x)/(x)log(1-x)`

C

`1+(1-x)/(x)log(1+x)`

D

`(1-x)/(x)log(1+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series given by \[ S = \frac{x}{1 \cdot 2} + \frac{x^2}{2 \cdot 3} + \frac{x^3}{3 \cdot 4} + \ldots \] we can express it in a more manageable form. Let's denote the general term of the series as \[ a_n = \frac{x^n}{n(n+1)}. \] ### Step 1: Rewrite the General Term We can rewrite the term \( \frac{1}{n(n+1)} \) using partial fractions: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}. \] Thus, we can express the general term as: \[ a_n = x^n \left( \frac{1}{n} - \frac{1}{n+1} \right). \] ### Step 2: Sum the Series Now, we can write the series \( S \) as: \[ S = \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left( x^n \left( \frac{1}{n} - \frac{1}{n+1} \right) \right). \] This can be separated into two sums: \[ S = \sum_{n=1}^{\infty} \frac{x^n}{n} - \sum_{n=1}^{\infty} \frac{x^n}{n+1}. \] ### Step 3: Evaluate Each Sum The first sum is the Taylor series expansion for \( -\log(1-x) \): \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x). \] For the second sum, we can shift the index: \[ \sum_{n=1}^{\infty} \frac{x^n}{n+1} = \sum_{m=2}^{\infty} \frac{x^{m-1}}{m} = \frac{1}{x} \sum_{m=1}^{\infty} \frac{x^m}{m} = \frac{-\log(1-x)}{x}. \] ### Step 4: Combine the Results Now substituting back into the expression for \( S \): \[ S = -\log(1-x) - \frac{-\log(1-x)}{x}. \] Factoring out \( -\log(1-x) \): \[ S = -\log(1-x) \left( 1 - \frac{1}{x} \right) = -\log(1-x) \cdot \frac{x-1}{x}. \] ### Final Result Thus, the sum of the series is: \[ S = \frac{(1-x) \log(1-x)}{x}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

Find Lt_(xto1)(2x^(2)+3x+4) .

Find the product of the following binomials; (i) (x^4+2/(x^2))(x^4-2/(x^2)) (ii) (x^3+1/(x^3))\ (x^3-1/(x^3))

If xx=sqrt(3)+sqrt(2), then find xx+1/x,x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4))

Find the nth term of the series 1+2^(2)x+3^(2)x^(2)+4^(2)x^(3)+....

In the sum to infinity of the series 3+(3+x) (1)/(4) + (3+2x)(1)/(4^(2))+ ..... "is" (44)/(9) find x.

if p=x+1 and (4p-3)/(2)-(3x+2)/(5)=(3)/(2) find x

Evaluate: int((x^2+1)(x^2+2))/((x^2+3)(x^2+4))\ dx

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))