Home
Class 12
MATHS
The coefficient of x^(6) in log[(1+x)^...

The coefficient of `x^(6)` in
`log[(1+x)^(1+x)(1-x)^(1-x)]=`

A

a) `(1)/(15)`

B

b) `(1)/(30)`

C

c) `(1)/(10)`

D

d) `(1)/(45)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^6 \) in the expression \[ \log\left[(1+x)^{1+x}(1-x)^{1-x}\right], \] we can follow these steps: ### Step 1: Use the logarithmic property Using the property of logarithms that states \( \log(A \cdot B) = \log A + \log B \), we can rewrite the expression as: \[ \log\left[(1+x)^{1+x}\right] + \log\left[(1-x)^{1-x}\right]. \] ### Step 2: Simplify using logarithmic identities Applying the power rule of logarithms, we have: \[ (1+x) \log(1+x) + (1-x) \log(1-x). \] ### Step 3: Expand the logarithmic functions We can expand \( \log(1+x) \) and \( \log(1-x) \) using their Taylor series expansions: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \] \[ \log(1-x) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots\right). \] ### Step 4: Substitute the expansions Substituting these expansions into our expression gives: \[ (1+x)\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots\right) + (1-x)\left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots\right). \] ### Step 5: Distribute and collect like terms Now we need to distribute and collect terms for \( x^6 \): 1. From \( (1+x)\log(1+x) \): - The term \( 1 \cdot x^6 \) contributes \( \frac{1}{6} \). - The term \( x \cdot x^5 \) contributes \( \frac{1}{5} \). 2. From \( (1-x)\log(1-x) \): - The term \( 1 \cdot (-x^6) \) contributes \( -\frac{1}{6} \). - The term \( -x \cdot (-x^5) \) contributes \( \frac{1}{5} \). ### Step 6: Combine contributions Now we combine all contributions to find the coefficient of \( x^6 \): \[ \text{Coefficient of } x^6 = \left(\frac{1}{6} - \frac{1}{6}\right) + \left(\frac{1}{5} + \frac{1}{5}\right) = 0 + \frac{2}{5} = \frac{2}{5}. \] ### Step 7: Final calculation Now we calculate the final coefficient: \[ \frac{2}{5} - \frac{2}{6} = \frac{2}{5} - \frac{5}{15} = \frac{6}{15} - \frac{5}{15} = \frac{1}{15}. \] Thus, the coefficient of \( x^6 \) in the expansion is \[ \boxed{\frac{1}{15}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Coefficient of x^(2) in log(1+x) =

If |x| lt 1 then coefficient of x^(2) in (log(1+x))/((1-x)^(2)) is

Coefficient of x^(n) in log_(e )(1+(x)/(2)) is

Find the coefficient of x^6 in (1 +x+x^2)^(-3)

The coefficients of x^(6) in (1 + x + x^(2))^(-3) , is

The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(1-x) } is

The coefficient of x^6 in {(1+x)^6+(1+x)^7+........+(1+x)^(15)} is

The coefficient of x^6 in {(1+x)^6+(1+x)^7+........+(1+x)^(15)} is

Assertion (A) : The coefficient of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

The coefficient of x^4 in ((1+x)/(1-x))^2,|x|<1 , is