Home
Class 12
MATHS
A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3)....

A : `(1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2))`
R : `log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...`

A

A is true, R is true and R is correct explanation of A

B

A is true, R is true and R is not correct explanation of A

C

A is true, R is false

D

A is false, R is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the series given in assertion A and the series given in reason R. We will show that the series in A is indeed equal to \( \log_e \left( \frac{3}{2} \right) \) by using the series expansion provided in R. ### Step-by-Step Solution: 1. **Understanding Assertion A:** The series given in A is: \[ A = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{3} \cdot \frac{1}{2^3} - \frac{1}{4} \cdot \frac{1}{2^4} + \ldots \] This can be rewritten as: \[ A = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 2^n} \] 2. **Understanding Reason R:** The series given in R is the Taylor series expansion for \( \log_e(1+x) \): \[ \log_e(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] We will substitute \( x = \frac{1}{2} \) into this series. 3. **Substituting \( x = \frac{1}{2} \) in R:** \[ \log_e(1 + \frac{1}{2}) = \log_e(\frac{3}{2}) \] Now substituting \( x = \frac{1}{2} \) into the series: \[ \log_e(1 + \frac{1}{2}) = \frac{1}{2} - \frac{(\frac{1}{2})^2}{2} + \frac{(\frac{1}{2})^3}{3} - \frac{(\frac{1}{2})^4}{4} + \ldots \] This simplifies to: \[ \log_e(\frac{3}{2}) = \frac{1}{2} - \frac{1}{8} + \frac{1}{24} - \frac{1}{64} + \ldots \] 4. **Comparing the Two Series:** Notice that the series we derived from R matches the series in A: \[ A = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 2^n} = \log_e(\frac{3}{2}) \] Thus, we have shown that assertion A is indeed equal to \( \log_e \left( \frac{3}{2} \right) \). 5. **Conclusion:** Since both assertion A and reason R are true, we conclude that: \[ A = \log_e \left( \frac{3}{2} \right) \quad \text{and} \quad R \text{ is also true.} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

Prove that log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

Statement-I : ((x-y)/(x))+(1)/(2)((x-y)/(x))^(2)+(1)/(3)((x-y)/(x))^(3)+….=log_(e )x-log_(e )y Statement-II : (a-1)-((a-1)^(2))/(2)+((a-1)^(3))/(3)-((a-1)^(4))/(4 )+….=log_(e )a Which of the above statements true

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]

Solve log_(4)(x-1)= log_(2) (x-3) .

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

Prove that : (log)_e((x+1)/x)=2[1/((2x+1))+1/(3(2x+1)^3)+1/(5(2x+1)^5)+]

Prove that : (log)_e((x+1)/x)=2[1/((2x+1))+1/(3(2x+1)^3)+1/(5(2x+1)^5)+]

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .