Home
Class 12
MATHS
If S.D of x(1), x(2), x(3),….x(n),… is s...

If S.D of `x_(1), x_(2), x_(3),….x_(n),…` is `sigma`, then find S.D of `-x_(1), -x_(2), -x_(3),….-x_(n)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard deviation of the values `-x1, -x2, -x3, ..., -xn` given that the standard deviation of `x1, x2, x3, ..., xn` is `σ`, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding Standard Deviation**: The standard deviation (S.D.) of a set of values measures the amount of variation or dispersion from the mean. It is defined as: \[ S.D. = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} \] where \( \bar{x} \) is the mean of the values \( x_1, x_2, ..., x_n \). 2. **Mean of the Original Set**: Let the mean of the original set \( x_1, x_2, ..., x_n \) be \( \bar{x} \). Thus, we have: \[ \bar{x} = \frac{x_1 + x_2 + ... + x_n}{n} \] 3. **Mean of the New Set**: The mean of the new set \( -x_1, -x_2, ..., -x_n \) can be calculated as: \[ \bar{-x} = \frac{-x_1 + -x_2 + ... + -x_n}{n} = -\bar{x} \] 4. **Calculating the S.D. of the New Set**: The standard deviation of the new set \( -x_1, -x_2, ..., -x_n \) is given by: \[ S.D. = \sqrt{\frac{\sum (-x_i - \bar{-x})^2}{n}} \] Substituting \( \bar{-x} = -\bar{x} \): \[ S.D. = \sqrt{\frac{\sum (-x_i + \bar{x})^2}{n}} \] 5. **Simplifying the Expression**: Notice that: \[ -x_i + \bar{x} = -(x_i - \bar{x}) \] Therefore, we have: \[ S.D. = \sqrt{\frac{\sum (-(x_i - \bar{x}))^2}{n}} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} \] Since squaring a negative value results in a positive value, we can simplify this to: \[ S.D. = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} = S.D. \text{ of the original set} \] 6. **Conclusion**: Thus, the standard deviation of the set \( -x_1, -x_2, ..., -x_n \) is the same as that of the original set: \[ S.D. = \sigma \] ### Final Answer: The standard deviation of `-x1, -x2, -x3, ..., -xn` is `σ`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The variance of observation x_(1), x_(2),x_(3),…,x_(n) is sigma^(2) then the variance of alpha x_(1), alpha x_(2), alpha x_(3),….,alpha x_(n), (alpha != 0) is

If the standard deviation of x_(1),x_(2),….,x_(n) is 3.5 then the standard deviation of -2x_(1)-3, -2x_(2)-3,….,-2x_(n)-3 is

If x_(1),x_(2),x_(3),…,x_(n) are the roots of the equation x^(n)+ax+b=0 , the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n)) is

If x_(1),x_(2),x_(3),.,x_(n) are the roots of the equation x^(n)+ax+b=0 , the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n)) is

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If barx represents the mean of n observations x_(1), x_(2),………., x_(n) , then values of Sigma_(i=1)^(n) (x_(i)-barx)

The means and variance of n observations x_(1),x_(2),x_(3),…x_(n) are 0 and 5 respectively. If sum_(i=1)^(n) x_(i)^(2) = 400 , then find the value of n

The average of n numbers x_(1),x_(2),x_(3) . . . . .. ,x_(n) is A. If x_(1) is replaced by (x+a)x_(1),x_(2) is replaced by (x+a)x_(2) and so on. Find the new average.

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is