Home
Class 12
MATHS
Find the variance and standard deviation...

Find the variance and standard deviation of the following data :
(i) 6,7,10,12,13,4,8,12
(ii) 5,12,3,18,6,8,2,10
(iii) 350,361, 370, 373, 376, 379, 385, 387, 394, 395

Text Solution

AI Generated Solution

The correct Answer is:
To find the variance and standard deviation for the given data sets, we will follow these steps: ### Part (i): Data: 6, 7, 10, 12, 13, 4, 8, 12 **Step 1: Calculate the Mean (x̄)** Mean is calculated using the formula: \[ \text{Mean} (x̄) = \frac{\sum x_i}{n} \] Where \( n \) is the number of observations. Calculating: \[ x̄ = \frac{6 + 7 + 10 + 12 + 13 + 4 + 8 + 12}{8} = \frac{72}{8} = 9 \] **Step 2: Calculate the Variance (σ²)** Variance is calculated using the formula: \[ \sigma^2 = \frac{\sum (x_i - x̄)^2}{n} \] Calculating: \[ \sigma^2 = \frac{(6 - 9)^2 + (7 - 9)^2 + (10 - 9)^2 + (12 - 9)^2 + (13 - 9)^2 + (4 - 9)^2 + (8 - 9)^2 + (12 - 9)^2}{8} \] \[ = \frac{(-3)^2 + (-2)^2 + (1)^2 + (3)^2 + (4)^2 + (-5)^2 + (-1)^2 + (3)^2}{8} \] \[ = \frac{9 + 4 + 1 + 9 + 16 + 25 + 1 + 9}{8} \] \[ = \frac{74}{8} = 9.25 \] **Step 3: Calculate the Standard Deviation (σ)** Standard deviation is the square root of variance: \[ \sigma = \sqrt{\sigma^2} = \sqrt{9.25} \approx 3.04 \] ### Part (ii): Data: 5, 12, 3, 18, 6, 8, 2, 10 **Step 1: Calculate the Mean (x̄)** Calculating: \[ x̄ = \frac{5 + 12 + 3 + 18 + 6 + 8 + 2 + 10}{8} = \frac{64}{8} = 8 \] **Step 2: Calculate the Variance (σ²)** Calculating: \[ \sigma^2 = \frac{(5 - 8)^2 + (12 - 8)^2 + (3 - 8)^2 + (18 - 8)^2 + (6 - 8)^2 + (8 - 8)^2 + (2 - 8)^2 + (10 - 8)^2}{8} \] \[ = \frac{(-3)^2 + (4)^2 + (-5)^2 + (10)^2 + (-2)^2 + (0)^2 + (-6)^2 + (2)^2}{8} \] \[ = \frac{9 + 16 + 25 + 100 + 4 + 0 + 36 + 4}{8} \] \[ = \frac{194}{8} = 24.25 \] **Step 3: Calculate the Standard Deviation (σ)** Calculating: \[ \sigma = \sqrt{24.25} \approx 4.92 \] ### Part (iii): Data: 350, 361, 370, 373, 376, 379, 385, 387, 394, 395 **Step 1: Calculate the Mean (x̄)** Calculating: \[ x̄ = \frac{350 + 361 + 370 + 373 + 376 + 379 + 385 + 387 + 394 + 395}{10} = \frac{3770}{10} = 377 \] **Step 2: Calculate the Variance (σ²)** Calculating: \[ \sigma^2 = \frac{(350 - 377)^2 + (361 - 377)^2 + (370 - 377)^2 + (373 - 377)^2 + (376 - 377)^2 + (379 - 377)^2 + (385 - 377)^2 + (387 - 377)^2 + (394 - 377)^2 + (395 - 377)^2}{10} \] \[ = \frac{(-27)^2 + (-16)^2 + (-7)^2 + (-4)^2 + (-1)^2 + (2)^2 + (8)^2 + (10)^2 + (17)^2 + (18)^2}{10} \] \[ = \frac{729 + 256 + 49 + 16 + 1 + 4 + 64 + 100 + 289 + 324}{10} \] \[ = \frac{1832}{10} = 183.2 \] **Step 3: Calculate the Standard Deviation (σ)** Calculating: \[ \sigma = \sqrt{183.2} \approx 13.54 \] ### Summary of Results: - For (i): Variance = 9.25, Standard Deviation ≈ 3.04 - For (ii): Variance = 24.25, Standard Deviation ≈ 4.92 - For (iii): Variance = 183.2, Standard Deviation ≈ 13.54
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the mean, variance and standard deviation for the following data: 6,7,10,12,13,4,8,12

Find the variance and standard deviation for the following data: 4,6,10,12,14,18,20

Find the variance and standard deviation of the following data 5,12,3,18,6,8,2,10

Find the mean variance and standard deviation for the following data: 2,4,5,6,8,17

Calculate variance and standard deviation of the following data : 10, 12, 8, 14, 16

Find the standard deviation for the following data :5,9,8,12,6,10,6,8

Find the mean deviation about the mean for the following data: 6, 7, 10 , 12 , 13 , 4, 8, 12

Mean deviation from the mean for data 6, 7 10, 12, 13, 4, 8, 12 is

Find the mean deviation from the mean for the data: 6,7,10,12,13,4,8,20.

Find the mean deviation from the mean for the data: 6,7,10,12,13,4,8,20.