Home
Class 12
MATHS
If n= 10, sum(i=1)^(10) x(i) = 60 and su...

If `n= 10, sum_(i=1)^(10) x_(i) = 60` and `sum_(i=1)^(10) x_(i)^(2) = 1000` then find s.d.

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard deviation (s.d.) given the values, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the given values:** - \( n = 10 \) - \( \sum_{i=1}^{10} x_i = 60 \) - \( \sum_{i=1}^{10} x_i^2 = 1000 \) 2. **Use the formula for standard deviation:** The formula for the standard deviation is: \[ s.d. = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n} - \left(\frac{\sum_{i=1}^{n} x_i}{n}\right)^2} \] 3. **Calculate \( \frac{\sum_{i=1}^{10} x_i^2}{n} \):** \[ \frac{\sum_{i=1}^{10} x_i^2}{n} = \frac{1000}{10} = 100 \] 4. **Calculate \( \frac{\sum_{i=1}^{10} x_i}{n} \):** \[ \frac{\sum_{i=1}^{10} x_i}{n} = \frac{60}{10} = 6 \] 5. **Square the result from step 4:** \[ \left(\frac{\sum_{i=1}^{10} x_i}{n}\right)^2 = 6^2 = 36 \] 6. **Substitute the results into the standard deviation formula:** \[ s.d. = \sqrt{100 - 36} \] 7. **Calculate the difference:** \[ 100 - 36 = 64 \] 8. **Take the square root:** \[ s.d. = \sqrt{64} = 8 \] ### Final Answer: The standard deviation (s.d.) is \( 8 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(18)(x_(i) - 8) = 9 and sum_(i=1)^(18)(x_(i) - 8)^(2) = 45 then find the standard deviation of x_(1), x_(2),….x_(18)

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i) = 20 show the values of n are 5 or 20

If Sigma_(i=1)^(10) x_i=60 and Sigma_(i=1)^(10)x_i^2=360 then Sigma_(i=1)^(10)x_i^3 is

For a sample size of 10 observations x_(1), x_(2),...... x_(10) , if Sigma_(i=1)^(10)(x_(i)-5)^(2)=350 and Sigma_(i=1)^(10)(x_(i)-2)=60 , then the variance of x_(i) is

If sum_(i=1)^(15)x_(i)=45,A=sum_(i=1)^(15)(x_(i)-2)^(2) , B=sum_(i=1)^(15)(x_(i)-3)^(2) and C=sum_(i=1)^(15)(x_(i)-5)^(2) then Statement 1: min(A,B,C)=A Statement 2: The sum of squares of deviations is least when taken from man.

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to