Home
Class 12
MATHS
If sum(i=1)^(18)(x(i) - 8) = 9 and sum(i...

If `sum_(i=1)^(18)(x_(i) - 8) = 9` and `sum_(i=1)^(18)(x_(i) - 8)^(2) = 45` then find the standard deviation of `x_(1), x_(2),….x_(18)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard deviation of the values \( x_1, x_2, \ldots, x_{18} \) given the conditions, we can follow these steps: ### Step 1: Calculate the Mean of \( x_i - 8 \) We are given: \[ \sum_{i=1}^{18} (x_i - 8) = 9 \] To find the mean, we divide the sum by the number of terms (which is 18): \[ \text{Mean} = \frac{\sum_{i=1}^{18} (x_i - 8)}{18} = \frac{9}{18} = \frac{1}{2} \] ### Step 2: Calculate the Mean of \( (x_i - 8)^2 \) We are also given: \[ \sum_{i=1}^{18} (x_i - 8)^2 = 45 \] To find the mean of the squares, we divide by the number of terms: \[ \text{Mean of squares} = \frac{\sum_{i=1}^{18} (x_i - 8)^2}{18} = \frac{45}{18} = \frac{5}{2} \] ### Step 3: Calculate the Variance The variance is calculated using the formula: \[ \text{Variance} = \text{Mean of squares} - (\text{Mean})^2 \] Substituting the values we found: \[ \text{Variance} = \frac{5}{2} - \left(\frac{1}{2}\right)^2 \] Calculating \( \left(\frac{1}{2}\right)^2 \): \[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Now substituting back into the variance formula: \[ \text{Variance} = \frac{5}{2} - \frac{1}{4} \] To perform the subtraction, we convert \( \frac{5}{2} \) to have a common denominator of 4: \[ \frac{5}{2} = \frac{10}{4} \] Now we can subtract: \[ \text{Variance} = \frac{10}{4} - \frac{1}{4} = \frac{9}{4} \] ### Step 4: Calculate the Standard Deviation The standard deviation is the square root of the variance: \[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{\frac{9}{4}} = \frac{3}{2} \] Thus, the standard deviation of \( x_1, x_2, \ldots, x_{18} \) is: \[ \boxed{\frac{3}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

If x_(1), x_(2), "…......." x_(18) are observation such that sum_(j=1)^(18)(x_(j) -8) = 9 and sum_(j=1)^(18)(x_(j) -8)^(2) = 45 , then the standard deviation of these observations is

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"

If sum_(i=1)^n(x_i+1)^2=9n and sum_(i=1)^n(x_i-1)^2=5n , then standard deviation of these 'n' observations (x_1) is: (1) 2sqrt(3) (2) sqrt(3) (3) sqrt(5) (4) 3sqrt(2)

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

If sum_(i=1)^10 sin^-1 x_i = 5pi then sum_(i=1)^10 x_i^2 = (A) 0 (B) 5 (C) 10 (D) none of these