Home
Class 12
MATHS
Mean of the numbers 1,2,3,…,n with respe...

Mean of the numbers 1,2,3,…,n with respective weights
`1^(2) + 1, 2^(2) + 2, 3^(2) + 3,…,n^(2)+n` is

A

`(3n+2)/(2)`

B

`(3n+1)/(4)`

C

`(2n+1)/(3)`

D

`(3n(n+1))/(2(2n +1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean of the numbers \(1, 2, 3, \ldots, n\) with respective weights \(i^2 + i\), we will follow these steps: ### Step 1: Define the variables Let \(x_i = i\) (the numbers) and the weights \(w_i = i^2 + i\) for \(i = 1, 2, 3, \ldots, n\). ### Step 2: Write the formula for the mean The mean can be calculated using the formula: \[ \text{Mean} = \frac{\sum_{i=1}^{n} w_i \cdot x_i}{\sum_{i=1}^{n} w_i} \] ### Step 3: Calculate the numerator \(\sum_{i=1}^{n} w_i \cdot x_i\) Substituting \(w_i\) and \(x_i\): \[ \sum_{i=1}^{n} w_i \cdot x_i = \sum_{i=1}^{n} (i^2 + i) \cdot i = \sum_{i=1}^{n} (i^3 + i^2) \] This can be separated into two sums: \[ \sum_{i=1}^{n} i^3 + \sum_{i=1}^{n} i^2 \] Using the formulas for the sums: - \(\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2\) - \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}\) Thus, the numerator becomes: \[ \sum_{i=1}^{n} w_i \cdot x_i = \left(\frac{n(n+1)}{2}\right)^2 + \frac{n(n+1)(2n+1)}{6} \] ### Step 4: Calculate the denominator \(\sum_{i=1}^{n} w_i\) \[ \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} (i^2 + i) = \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i \] Using the formulas: - \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}\) Thus, the denominator becomes: \[ \sum_{i=1}^{n} w_i = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \] Combining these terms gives: \[ \sum_{i=1}^{n} w_i = \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{6} = \frac{n(n+1)(2n+4)}{6} = \frac{n(n+1)(n+2)}{3} \] ### Step 5: Combine the results to find the mean Now substituting the numerator and denominator into the mean formula: \[ \text{Mean} = \frac{\left(\frac{n(n+1)}{2}\right)^2 + \frac{n(n+1)(2n+1)}{6}}{\frac{n(n+1)(n+2)}{3}} \] ### Step 6: Simplify the expression To simplify, multiply both numerator and denominator by 6 to eliminate the fractions: \[ \text{Mean} = \frac{3\left(\frac{n(n+1)}{2}\right)^2 + n(n+1)(2n+1)}{2n(n+1)(n+2)} \] This simplifies to: \[ \text{Mean} = \frac{3n^2 + 7n + 2}{4} \] ### Final Result Thus, the mean of the numbers \(1, 2, 3, \ldots, n\) with respective weights \(i^2 + i\) is: \[ \text{Mean} = \frac{3n + 1}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1^(2)+1+2^(2)+2+3^(2)+3+ . . . . .. +n^(2)+n , is

The sum of the series 1^(2)+1+2^(2)+2+3^(2)+3+ . . . . .. +n^(n)+n , is

The sum of the product taken two at a time of the numbers 1,2,2^2,2^3,.....2^(n-2),2^(n-1) is (a) 1/3 . 2^(2n) +2/3 (b) 1/3. 2^(2n) -2^n + 1/3 (c) 1/3. 3^(2n) -1/3 (d) none of these

The arthmetic mean of the numbers 1,3,3^(2), … ,3^(n-1), is

Find the sum of the series (1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n! .

Prove by the principal of mathematcal induction that for all n in N . 1^(2) + 3^(2) + 5^(2) + …… + (2n - 1)^(2) = (n(2n - 1) (2n + 1))/(3)

If the variate of a distribution takes the values 1^(2), 2^(2), 3^(2),….n^(2) with frequencies n, n-1, n-2,….3,2,1 respectively, then the mean value of the distribution is

If a variable takes value 0,1,2,3,....,n with frequencies 1,C(n,1),C(n,2),C(n,3),...,C(n,n) respectively, then the arithmetic mean is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .