Home
Class 12
MATHS
If a variable takes the values 0, 1, 2,…...

If a variable takes the values 0, 1, 2,…,n with frequencies proporiotnal to binomial coefficient `n_(C_(0)), n_(C_(1)), n_(C_(2)),….n_(C_(n))`, then mean of distribution is

A

`(2^(n))/(n+1)`

B

`(2^(n-1))/(n(n+1))`

C

`(n+1)/(2)`

D

`(n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean of a distribution where a variable takes the values 0, 1, 2, ..., n with frequencies proportional to the binomial coefficients \( \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \), we can follow these steps: ### Step 1: Define the Mean The mean \( \mu \) of a distribution can be calculated using the formula: \[ \mu = \frac{\sum (x_i \cdot f_i)}{\sum f_i} \] where \( x_i \) are the values of the variable and \( f_i \) are the corresponding frequencies. ### Step 2: Identify the Values and Frequencies In this case, the values \( x_i \) are \( 0, 1, 2, \ldots, n \) and the frequencies \( f_i \) are proportional to the binomial coefficients: \[ f_0 = \binom{n}{0}, \quad f_1 = \binom{n}{1}, \quad f_2 = \binom{n}{2}, \ldots, \quad f_n = \binom{n}{n} \] ### Step 3: Calculate the Total Frequency The total frequency \( \sum f_i \) can be calculated as: \[ \sum f_i = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} = 2^n \] This is based on the binomial theorem, which states that the sum of the binomial coefficients for a given \( n \) is \( 2^n \). ### Step 4: Calculate the Weighted Sum Now, we need to calculate the weighted sum \( \sum (x_i \cdot f_i) \): \[ \sum (x_i \cdot f_i) = 0 \cdot \binom{n}{0} + 1 \cdot \binom{n}{1} + 2 \cdot \binom{n}{2} + \ldots + n \cdot \binom{n}{n} \] This can be simplified using the property of derivatives of the binomial expansion. ### Step 5: Use the Binomial Expansion The binomial expansion states: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] Differentiating both sides with respect to \( x \): \[ n(1 + x)^{n-1} = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1} \] Now, if we set \( x = 1 \): \[ n(1 + 1)^{n-1} = \sum_{k=1}^{n} k \binom{n}{k} \] This simplifies to: \[ n \cdot 2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k} \] ### Step 6: Substitute into the Mean Formula Now substituting back into our mean formula: \[ \mu = \frac{\sum (x_i \cdot f_i)}{\sum f_i} = \frac{n \cdot 2^{n-1}}{2^n} = \frac{n}{2} \] ### Final Result Thus, the mean of the distribution is: \[ \mu = \frac{n}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n) , then var (X) is

If a variable X takes values of 0,1,2, .... n with frequencies \ \ ^n C_0,\ ^n C_1,\ ^n C_2,..... ,\ ^n C_n , then variance of distribution is

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If a variable takes value 0,1,2,3,....,n with frequencies 1,C(n,1),C(n,2),C(n,3),...,C(n,n) respectively, then the arithmetic mean is

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_0,C_1,C_2..C_n denote the coefficients in the binomial expansion of (1 +x)^n , then C_0 + 2.C_1 +3.C_2+. (n+1) C_n

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.