Home
Class 12
MATHS
The minimum value (x-6)^(2) + (x + 3)^(2...

The minimum value `(x-6)^(2) + (x + 3)^(2) + (x-8)^(2) + (x + 4)^(2) + (x-3)^(2)` is

A

114

B

141

C

104

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \((x-6)^{2} + (x + 3)^{2} + (x-8)^{2} + (x + 4)^{2} + (x-3)^{2}\), we will follow these steps: ### Step 1: Write down the expression We start with the expression: \[ f(x) = (x-6)^{2} + (x + 3)^{2} + (x-8)^{2} + (x + 4)^{2} + (x-3)^{2} \] ### Step 2: Expand each term Next, we expand each squared term: 1. \((x-6)^{2} = x^{2} - 12x + 36\) 2. \((x + 3)^{2} = x^{2} + 6x + 9\) 3. \((x-8)^{2} = x^{2} - 16x + 64\) 4. \((x + 4)^{2} = x^{2} + 8x + 16\) 5. \((x-3)^{2} = x^{2} - 6x + 9\) ### Step 3: Combine all the expanded terms Now, we combine all the expanded terms: \[ f(x) = (x^{2} - 12x + 36) + (x^{2} + 6x + 9) + (x^{2} - 16x + 64) + (x^{2} + 8x + 16) + (x^{2} - 6x + 9) \] Combining like terms: - The \(x^{2}\) terms: \(5x^{2}\) - The \(x\) terms: \(-12x + 6x - 16x + 8x - 6x = -20x\) - The constant terms: \(36 + 9 + 64 + 16 + 9 = 134\) So, we have: \[ f(x) = 5x^{2} - 20x + 134 \] ### Step 4: Find the vertex of the quadratic The expression \(f(x) = 5x^{2} - 20x + 134\) is a quadratic function. The minimum value occurs at the vertex, which can be found using the formula: \[ x = -\frac{b}{2a} \] where \(a = 5\) and \(b = -20\). Calculating: \[ x = -\frac{-20}{2 \cdot 5} = \frac{20}{10} = 2 \] ### Step 5: Substitute back to find the minimum value Now we substitute \(x = 2\) back into the function \(f(x)\): \[ f(2) = 5(2)^{2} - 20(2) + 134 \] Calculating: \[ f(2) = 5(4) - 40 + 134 = 20 - 40 + 134 = 114 \] ### Conclusion Thus, the minimum value of the expression is: \[ \boxed{114} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of (x^(2)+2x+4)/(x+2) , is

Minimum value of of f (x)=2x^(2)-4x+5is

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

The minimum value of the polynimial x(x+1)(x+2)(x+3) is

The minimum value |x-6| + |x+3| + |x-8|+|x+4|+|x+3| is

The minimum value of f(x)=x^4-x^2-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

If x is real , then the minimum value of (x^(2)-3x+4)/(x^(2)+3x+4) is :

If (x+1)^(2) =x , the value of 11x^(3) + 8x^(2) + 8x -2 is:

The minimum value of the function, f(x)=x^(3//2)+x^(-3//2)-4(x+(1)/(x)). For all permissible real values of x is