Home
Class 12
MATHS
The minimum value |x-6| + |x+3| + |x-8|+...

The minimum value `|x-6| + |x+3| + |x-8|+|x+4|+|x+3|` is

A

11

B

21

C

31

D

42

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = |x - 6| + |x + 3| + |x - 8| + |x + 4| + |x + 3| \), we will follow these steps: ### Step 1: Simplify the Function We can rewrite the function as: \[ f(x) = |x - 6| + 2|x + 3| + |x - 8| + |x + 4| \] ### Step 2: Identify Critical Points The critical points occur where the expressions inside the absolute values change sign. These points are: - \( x = 6 \) - \( x = -3 \) - \( x = 8 \) - \( x = -4 \) ### Step 3: Evaluate the Function at Critical Points We will evaluate \( f(x) \) at each of these critical points. 1. **At \( x = 6 \)**: \[ f(6) = |6 - 6| + 2|6 + 3| + |6 - 8| + |6 + 4| \] \[ = 0 + 2(9) + 2 + 10 = 0 + 18 + 2 + 10 = 30 \] 2. **At \( x = -3 \)**: \[ f(-3) = |-3 - 6| + 2|-3 + 3| + |-3 - 8| + |-3 + 4| \] \[ = 9 + 2(0) + 11 + 1 = 9 + 0 + 11 + 1 = 21 \] 3. **At \( x = 8 \)**: \[ f(8) = |8 - 6| + 2|8 + 3| + |8 - 8| + |8 + 4| \] \[ = 2 + 2(11) + 0 + 12 = 2 + 22 + 0 + 12 = 36 \] 4. **At \( x = -4 \)**: \[ f(-4) = |-4 - 6| + 2|-4 + 3| + |-4 - 8| + |-4 + 4| \] \[ = 10 + 2(1) + 12 + 0 = 10 + 2 + 12 + 0 = 24 \] ### Step 4: Compare Values Now we compare the values obtained: - \( f(6) = 30 \) - \( f(-3) = 21 \) - \( f(8) = 36 \) - \( f(-4) = 24 \) The minimum value is \( f(-3) = 21 \). ### Conclusion Thus, the minimum value of the function is: \[ \boxed{21} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of (x)^6

3.The minimum value of x^(x) is.

The minimum value (x-6)^(2) + (x + 3)^(2) + (x-8)^(2) + (x + 4)^(2) + (x-3)^(2) is

If the maximum value of ||x-3| - |x-2|| is a and minimum value of |x-1| + |x-2| is b, then find the value of (a+b).

The minimum value of 3^(x)+3^(1-x), x in R

Find both the maximum and the minimum value of 3x^4-8x^3+ 12 x^2-48 x+1 on the interval [1,4] .

Find both the maximum and the minimum value of 3x^4-8x^3+ 12 x^2-48 x+1 on the interval [1,4] .

The minimum value of the function f(x)=(3 sin x - 4 cos x - 10)(3 sin x + 4 cos x-10) , is

The minimum of 3cosx +4sin x+8 is

The minimum value of 27^(cos3x)81^(sin3x) is