Home
Class 12
MATHS
If a variable takes the values 0, 1, 2,…...

If a variable takes the values 0, 1, 2,…,n with frequencies proporiotnal to binomial coefficient `n_(C_(0)), n_(C_(1)), n_(C_(2)),….n_(C_(n))`, then mean of distribution is

A

`(n^(2) - 1)/(12)`

B

`(n)/(2)`

C

`(n)/(4)`

D

`(n)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean of the distribution where a variable takes values \(0, 1, 2, \ldots, n\) with frequencies proportional to the binomial coefficients \(nC_0, nC_1, nC_2, \ldots, nC_n\), we can follow these steps: ### Step 1: Identify the values and frequencies The values of the variable \(x_i\) are: \[ x_i = 0, 1, 2, \ldots, n \] The corresponding frequencies \(f_i\) are: \[ f_i = nC_i \quad \text{for } i = 0, 1, 2, \ldots, n \] ### Step 2: Write the formula for the mean The mean \( \bar{x} \) of a distribution is given by: \[ \bar{x} = \frac{\sum_{i=0}^{n} x_i f_i}{\sum_{i=0}^{n} f_i} \] ### Step 3: Calculate the denominator The denominator is the total frequency: \[ \sum_{i=0}^{n} f_i = \sum_{i=0}^{n} nC_i \] Using the binomial theorem, we know: \[ \sum_{i=0}^{n} nC_i = 2^n \] ### Step 4: Calculate the numerator The numerator is: \[ \sum_{i=0}^{n} x_i f_i = \sum_{i=0}^{n} i \cdot nC_i \] To compute this, we can use the property of derivatives of binomial expansion. The sum can be expressed as: \[ \sum_{i=0}^{n} i \cdot nC_i = n \cdot \sum_{i=1}^{n} n-1C_{i-1} = n \cdot 2^{n-1} \] This is derived from the fact that \(i \cdot nC_i = nC_{i-1} \cdot i\). ### Step 5: Substitute into the mean formula Now we can substitute the values we calculated into the mean formula: \[ \bar{x} = \frac{n \cdot 2^{n-1}}{2^n} \] ### Step 6: Simplify the expression Simplifying this gives: \[ \bar{x} = \frac{n}{2} \] ### Conclusion Thus, the mean of the distribution is: \[ \bar{x} = \frac{n}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n) , then var (X) is

If a variable X takes values of 0,1,2, .... n with frequencies \ \ ^n C_0,\ ^n C_1,\ ^n C_2,..... ,\ ^n C_n , then variance of distribution is

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If a variable takes value 0,1,2,3,....,n with frequencies 1,C(n,1),C(n,2),C(n,3),...,C(n,n) respectively, then the arithmetic mean is

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_0,C_1,C_2..C_n denote the coefficients in the binomial expansion of (1 +x)^n , then C_0 + 2.C_1 +3.C_2+. (n+1) C_n

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is