Home
Class 12
MATHS
The A.M. of the series .^(n)C(0), .^(n...

The A.M. of the series
`.^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n)` is

A

`(2^(n))/(n+1)`

B

`(2^(n))/(n)`

C

`(2^(n-1))/(n+1)`

D

`(1)/(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the arithmetic mean (A.M.) of the series \( \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \), we can follow these steps: ### Step 1: Identify the terms of the series The terms of the series are the binomial coefficients: \[ \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \] ### Step 2: Calculate the sum of the terms We know from the binomial theorem that the sum of the binomial coefficients is given by: \[ \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} = 2^n \] ### Step 3: Count the number of terms The number of terms in the series is \( n + 1 \) (from \( \binom{n}{0} \) to \( \binom{n}{n} \)). ### Step 4: Calculate the arithmetic mean The arithmetic mean (A.M.) is calculated using the formula: \[ \text{A.M.} = \frac{\text{Sum of terms}}{\text{Number of terms}} = \frac{2^n}{n + 1} \] ### Conclusion Thus, the arithmetic mean of the series \( \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \) is: \[ \text{A.M.} = \frac{2^n}{n + 1} \] ### Final Answer The A.M. of the series is \( \frac{2^n}{n + 1} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n) , then var (X) is

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

STATEMENT - 1 : If n is even, .^(2n)C_(1)+.^(2n)C_(3)+.^(2n)C_(5)+"….."+.^(2n)C_(n-1) = 2^(2n-2) . STATEMENT - 2 : .^(2n)C_(1) + .^(2n)C_(3)+ .^(2n)C_(5) + "……"+ .^(2n)C_(2n-1) = 2^(2n-1)

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n)C_(r)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n+1)C_(r)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+2)C_(r)):}|=0

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is (a) 7 (b) 5 (c) 6 (d) 9

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .