Home
Class 12
MATHS
Find the equation of the circle with cen...

Find the equation of the circle with centre C and radius r where
(i) `C(-1,b),r=a+b`
(ii) `C=(-a,-b),r=sqrt(a^(2)-b^(2))(|a|gt|b|)`
(iii) `C=(cos theta, sin theta),r=1`
(iv) `C=(-7,-3),r=4`
(v) `C-(-1/2,-9),r=5`
(vi) `C=(1,7),r=5/2`
(vii) `C=(0,0),r=8`
(vii) `C=(2,-3),r=4`
(ix) `C=(-1,2),r=5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the circle with center \( C \) and radius \( r \), we use the standard form of the equation of a circle, which is: \[ (x - h)^2 + (y - k)^2 = r^2 \] where \( (h, k) \) is the center of the circle and \( r \) is the radius. Let's solve each part step by step. ### (i) \( C(-1, b), r = a + b \) 1. Identify \( h = -1 \), \( k = b \), and \( r = a + b \). 2. Substitute into the equation: \[ (x - (-1))^2 + (y - b)^2 = (a + b)^2 \] 3. Simplify: \[ (x + 1)^2 + (y - b)^2 = (a + b)^2 \] ### (ii) \( C=(-a,-b), r=\sqrt{a^2-b^2} \) where \( |a| > |b| \) 1. Identify \( h = -a \), \( k = -b \), and \( r = \sqrt{a^2 - b^2} \). 2. Substitute into the equation: \[ (x - (-a))^2 + (y - (-b))^2 = (\sqrt{a^2 - b^2})^2 \] 3. Simplify: \[ (x + a)^2 + (y + b)^2 = a^2 - b^2 \] ### (iii) \( C=(\cos \theta, \sin \theta), r=1 \) 1. Identify \( h = \cos \theta \), \( k = \sin \theta \), and \( r = 1 \). 2. Substitute into the equation: \[ (x - \cos \theta)^2 + (y - \sin \theta)^2 = 1^2 \] 3. Simplify: \[ (x - \cos \theta)^2 + (y - \sin \theta)^2 = 1 \] ### (iv) \( C=(-7,-3), r=4 \) 1. Identify \( h = -7 \), \( k = -3 \), and \( r = 4 \). 2. Substitute into the equation: \[ (x - (-7))^2 + (y - (-3))^2 = 4^2 \] 3. Simplify: \[ (x + 7)^2 + (y + 3)^2 = 16 \] ### (v) \( C=(-\frac{1}{2},-9), r=5 \) 1. Identify \( h = -\frac{1}{2} \), \( k = -9 \), and \( r = 5 \). 2. Substitute into the equation: \[ (x - (-\frac{1}{2}))^2 + (y - (-9))^2 = 5^2 \] 3. Simplify: \[ (x + \frac{1}{2})^2 + (y + 9)^2 = 25 \] ### (vi) \( C=(1,7), r=\frac{5}{2} \) 1. Identify \( h = 1 \), \( k = 7 \), and \( r = \frac{5}{2} \). 2. Substitute into the equation: \[ (x - 1)^2 + (y - 7)^2 = \left(\frac{5}{2}\right)^2 \] 3. Simplify: \[ (x - 1)^2 + (y - 7)^2 = \frac{25}{4} \] ### (vii) \( C=(0,0), r=8 \) 1. Identify \( h = 0 \), \( k = 0 \), and \( r = 8 \). 2. Substitute into the equation: \[ (x - 0)^2 + (y - 0)^2 = 8^2 \] 3. Simplify: \[ x^2 + y^2 = 64 \] ### (viii) \( C=(2,-3), r=4 \) 1. Identify \( h = 2 \), \( k = -3 \), and \( r = 4 \). 2. Substitute into the equation: \[ (x - 2)^2 + (y - (-3))^2 = 4^2 \] 3. Simplify: \[ (x - 2)^2 + (y + 3)^2 = 16 \] ### (ix) \( C=(-1,2), r=5 \) 1. Identify \( h = -1 \), \( k = 2 \), and \( r = 5 \). 2. Substitute into the equation: \[ (x - (-1))^2 + (y - 2)^2 = 5^2 \] 3. Simplify: \[ (x + 1)^2 + (y - 2)^2 = 25 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 16R^(2)r r_(1) r _(2) r_(3)=a^(2) b ^(2) c ^(2)

ln a triangle with sides a, b, c if r1 gt r2 gt r3 (which are the ex-radii), then

If a+ bi = (c + i)/(c-i), a, b , c in R , show that a^(2) + b^(2)=1 and (b)/(a)= (2c)/(c^(2)-1)

Prove that r_(1) r_(2) + r_(2) r_(3) + r_(3) r_(1) = (1)/(4) (a + b + c)^(2)

Prove the questions a(r r_(1) + r_(2)r_(3)) = b(r r_(2) + r_(3) r_(1)) = c (r r_(3) + r_(1) r_(2))

If the sides be a,b,c, than find (r_(1)- r)(r _(2)+r_(3)).

If A = {3, 5, 7, 9} and B = {a, b, c}, then which of the following are relations from A to B ? Give reasons for your answer. (i) R_(1) = {(3, a), (5, b), (5, c)} (ii) R_(2) = {(3, c), (9, b), (5, a)} (iii) R_(3) = {(3, c), (b, c), (7, b), (9, a)} (iv) R_(4) = {(3, b), (7, c), (c, a), (b, 9)}

Prove that : (r_1+r_2) tan (C )/(2) = (r_3- r) cot ( C)/(2) = c

In triangle A B C , let /_c=pi/2dot If r is the inradius and R is circumradius of the triangle, then 2(r+R) is equal to (a) a+b (b) b+c (c) c+a (d) a+b+c

Prove that : (r_1)/(b c)+(r_2)/(c a)+(r_3)/(a b)=1/r-1/(2R)