To find the equation of the circle with center \( C \) and radius \( r \), we use the standard form of the equation of a circle, which is:
\[
(x - h)^2 + (y - k)^2 = r^2
\]
where \( (h, k) \) is the center of the circle and \( r \) is the radius.
Let's solve each part step by step.
### (i) \( C(-1, b), r = a + b \)
1. Identify \( h = -1 \), \( k = b \), and \( r = a + b \).
2. Substitute into the equation:
\[
(x - (-1))^2 + (y - b)^2 = (a + b)^2
\]
3. Simplify:
\[
(x + 1)^2 + (y - b)^2 = (a + b)^2
\]
### (ii) \( C=(-a,-b), r=\sqrt{a^2-b^2} \) where \( |a| > |b| \)
1. Identify \( h = -a \), \( k = -b \), and \( r = \sqrt{a^2 - b^2} \).
2. Substitute into the equation:
\[
(x - (-a))^2 + (y - (-b))^2 = (\sqrt{a^2 - b^2})^2
\]
3. Simplify:
\[
(x + a)^2 + (y + b)^2 = a^2 - b^2
\]
### (iii) \( C=(\cos \theta, \sin \theta), r=1 \)
1. Identify \( h = \cos \theta \), \( k = \sin \theta \), and \( r = 1 \).
2. Substitute into the equation:
\[
(x - \cos \theta)^2 + (y - \sin \theta)^2 = 1^2
\]
3. Simplify:
\[
(x - \cos \theta)^2 + (y - \sin \theta)^2 = 1
\]
### (iv) \( C=(-7,-3), r=4 \)
1. Identify \( h = -7 \), \( k = -3 \), and \( r = 4 \).
2. Substitute into the equation:
\[
(x - (-7))^2 + (y - (-3))^2 = 4^2
\]
3. Simplify:
\[
(x + 7)^2 + (y + 3)^2 = 16
\]
### (v) \( C=(-\frac{1}{2},-9), r=5 \)
1. Identify \( h = -\frac{1}{2} \), \( k = -9 \), and \( r = 5 \).
2. Substitute into the equation:
\[
(x - (-\frac{1}{2}))^2 + (y - (-9))^2 = 5^2
\]
3. Simplify:
\[
(x + \frac{1}{2})^2 + (y + 9)^2 = 25
\]
### (vi) \( C=(1,7), r=\frac{5}{2} \)
1. Identify \( h = 1 \), \( k = 7 \), and \( r = \frac{5}{2} \).
2. Substitute into the equation:
\[
(x - 1)^2 + (y - 7)^2 = \left(\frac{5}{2}\right)^2
\]
3. Simplify:
\[
(x - 1)^2 + (y - 7)^2 = \frac{25}{4}
\]
### (vii) \( C=(0,0), r=8 \)
1. Identify \( h = 0 \), \( k = 0 \), and \( r = 8 \).
2. Substitute into the equation:
\[
(x - 0)^2 + (y - 0)^2 = 8^2
\]
3. Simplify:
\[
x^2 + y^2 = 64
\]
### (viii) \( C=(2,-3), r=4 \)
1. Identify \( h = 2 \), \( k = -3 \), and \( r = 4 \).
2. Substitute into the equation:
\[
(x - 2)^2 + (y - (-3))^2 = 4^2
\]
3. Simplify:
\[
(x - 2)^2 + (y + 3)^2 = 16
\]
### (ix) \( C=(-1,2), r=5 \)
1. Identify \( h = -1 \), \( k = 2 \), and \( r = 5 \).
2. Substitute into the equation:
\[
(x - (-1))^2 + (y - 2)^2 = 5^2
\]
3. Simplify:
\[
(x + 1)^2 + (y - 2)^2 = 25
\]