Home
Class 12
MATHS
Find the centre and radius of each of th...

Find the centre and radius of each of the circles whose equations are given below:
(i) `3x^(2)+3y^(2)-5x-6y+4=0`
(ii) `3x^(2)+3y^(2)+6x-12-1=0`
(iii) `x^(2)+y^(2)+6x+8y-96=0`
(iv) `2x^(2)+2y^(2)-4x+6y-3=0`
(v) `2x^(2)+2y^(2)-3x+2y-1=0`
(vi)` x^(2)+y^(2)+2x-4y-4=0`
(vii) `x^(2)+y^(2)-4x-8y-41=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the center and radius of the circles given by the equations, we will follow these steps for each equation: 1. **Rewrite the equation in standard form**: The general equation of a circle is given by: \[ x^2 + y^2 + 2gx + 2fy + c = 0 \] where the center is \((-g, -f)\) and the radius is \(\sqrt{g^2 + f^2 - c}\). 2. **Identify coefficients**: We will identify the coefficients \(g\), \(f\), and \(c\) from the rewritten equation. 3. **Calculate the center and radius**: Using the identified coefficients, we will calculate the center and radius. Now, let's solve each equation step by step: ### (i) \(3x^2 + 3y^2 - 5x - 6y + 4 = 0\) 1. **Divide the entire equation by 3**: \[ x^2 + y^2 - \frac{5}{3}x - 2y + \frac{4}{3} = 0 \] 2. **Identify coefficients**: - \(2g = -\frac{5}{3} \Rightarrow g = -\frac{5}{6}\) - \(2f = -2 \Rightarrow f = -1\) - \(c = \frac{4}{3}\) 3. **Calculate center and radius**: - Center: \((-g, -f) = \left(\frac{5}{6}, 1\right)\) - Radius: \(\sqrt{g^2 + f^2 - c} = \sqrt{\left(-\frac{5}{6}\right)^2 + (-1)^2 - \frac{4}{3}} = \sqrt{\frac{25}{36} + 1 - \frac{4}{3}} = \sqrt{\frac{25}{36} + \frac{36}{36} - \frac{48}{36}} = \sqrt{\frac{13}{36}} = \frac{\sqrt{13}}{6}\) ### (ii) \(3x^2 + 3y^2 + 6x - 12y - 1 = 0\) 1. **Divide the entire equation by 3**: \[ x^2 + y^2 + 2x - 4y - \frac{1}{3} = 0 \] 2. **Identify coefficients**: - \(2g = 2 \Rightarrow g = 1\) - \(2f = -4 \Rightarrow f = -2\) - \(c = -\frac{1}{3}\) 3. **Calculate center and radius**: - Center: \((-g, -f) = (-1, 2)\) - Radius: \(\sqrt{g^2 + f^2 - c} = \sqrt{1^2 + (-2)^2 - (-\frac{1}{3})} = \sqrt{1 + 4 + \frac{1}{3}} = \sqrt{5 + \frac{1}{3}} = \sqrt{\frac{15}{3} + \frac{1}{3}} = \sqrt{\frac{16}{3}} = \frac{4}{\sqrt{3}}\) ### (iii) \(x^2 + y^2 + 6x + 8y - 96 = 0\) 1. **Identify coefficients**: - \(2g = 6 \Rightarrow g = 3\) - \(2f = 8 \Rightarrow f = 4\) - \(c = -96\) 2. **Calculate center and radius**: - Center: \((-g, -f) = (-3, -4)\) - Radius: \(\sqrt{g^2 + f^2 - c} = \sqrt{3^2 + 4^2 - (-96)} = \sqrt{9 + 16 + 96} = \sqrt{121} = 11\) ### (iv) \(2x^2 + 2y^2 - 4x + 6y - 3 = 0\) 1. **Divide the entire equation by 2**: \[ x^2 + y^2 - 2x + 3y - \frac{3}{2} = 0 \] 2. **Identify coefficients**: - \(2g = -2 \Rightarrow g = -1\) - \(2f = 3 \Rightarrow f = \frac{3}{2}\) - \(c = -\frac{3}{2}\) 3. **Calculate center and radius**: - Center: \((-g, -f) = (1, -\frac{3}{2})\) - Radius: \(\sqrt{g^2 + f^2 - c} = \sqrt{(-1)^2 + \left(\frac{3}{2}\right)^2 - (-\frac{3}{2})} = \sqrt{1 + \frac{9}{4} + \frac{3}{2}} = \sqrt{1 + \frac{9}{4} + \frac{6}{4}} = \sqrt{\frac{19}{4}} = \frac{\sqrt{19}}{2}\) ### (v) \(2x^2 + 2y^2 - 3x + 2y - 1 = 0\) 1. **Divide the entire equation by 2**: \[ x^2 + y^2 - \frac{3}{2}x + y - \frac{1}{2} = 0 \] 2. **Identify coefficients**: - \(2g = -\frac{3}{2} \Rightarrow g = -\frac{3}{4}\) - \(2f = 1 \Rightarrow f = \frac{1}{2}\) - \(c = -\frac{1}{2}\) 3. **Calculate center and radius**: - Center: \((-g, -f) = \left(\frac{3}{4}, -\frac{1}{2}\right)\) - Radius: \(\sqrt{g^2 + f^2 - c} = \sqrt{\left(-\frac{3}{4}\right)^2 + \left(\frac{1}{2}\right)^2 - (-\frac{1}{2})} = \sqrt{\frac{9}{16} + \frac{1}{4} + \frac{1}{2}} = \sqrt{\frac{9}{16} + \frac{4}{16} + \frac{8}{16}} = \sqrt{\frac{21}{16}} = \frac{\sqrt{21}}{4}\) ### (vi) \(x^2 + y^2 + 2x - 4y - 4 = 0\) 1. **Identify coefficients**: - \(2g = 2 \Rightarrow g = 1\) - \(2f = -4 \Rightarrow f = -2\) - \(c = -4\) 2. **Calculate center and radius**: - Center: \((-g, -f) = (-1, 2)\) - Radius: \(\sqrt{g^2 + f^2 - c} = \sqrt{1^2 + (-2)^2 - (-4)} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3\) ### (vii) \(x^2 + y^2 - 4x - 8y - 41 = 0\) 1. **Identify coefficients**: - \(2g = -4 \Rightarrow g = -2\) - \(2f = -8 \Rightarrow f = -4\) - \(c = -41\) 2. **Calculate center and radius**: - Center: \((-g, -f) = (2, 4)\) - Radius: \(\sqrt{g^2 + f^2 - c} = \sqrt{(-2)^2 + (-4)^2 - (-41)} = \sqrt{4 + 16 + 41} = \sqrt{61}\) ### Summary of Results: 1. (i) Center: \(\left(\frac{5}{6}, 1\right)\), Radius: \(\frac{\sqrt{13}}{6}\) 2. (ii) Center: \((-1, 2)\), Radius: \(\frac{4}{\sqrt{3}}\) 3. (iii) Center: \((-3, -4)\), Radius: \(11\) 4. (iv) Center: \((1, -\frac{3}{2})\), Radius: \(\frac{\sqrt{19}}{2}\) 5. (v) Center: \(\left(\frac{3}{4}, -\frac{1}{2}\right)\), Radius: \(\frac{\sqrt{21}}{4}\) 6. (vi) Center: \((-1, 2)\), Radius: \(3\) 7. (vii) Center: \((2, 4)\), Radius: \(\sqrt{61}\)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

The circle x^(2)+y^(2)-4x-6y-12=0, x^(2)+y^(2)+6x-8y+21=0 are

Find the centre and radius of the circle 3x^(2)+ 3y^(2) - 6x + 4y - 4 = 0

Find the centre and radius of the circle 3x^(2) +3y^(2) - 6x +9y - 8 =0 .

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

the equation of the axes of the ellispe 3x^(2)+4y^(2)+6x-8y-5=0 are

Find the equation of the circle whose diameter is the common chord of the circles x^(2) + y^(2) + 2x + 3y + 1 = 0 and x^(2) + y^(2) + 4x + 3y + 2 = 0

The two circles x^(2)+y^(2)-2x-3=0 and x^(2)+y^(2)-4x-6y-8=0 are such that

The equation of the incircle of the triangle formed by the coordinate axes and the line 4x + 3y - 6 = 0 is (A) x^(2) + y^(2) - 6x - 6y - 9 = 0 (B) 4 (x^(2) + y^(2) - x - y) + 1 = 0 (C) 4 (x^(2) + y^(2) + x + y) + 1 = 0 (D) 4 (x^(2) + y^(2) - x - y ) - 1 = 0

Find the length of the tangent from P to the circle S=0 when (i) P(-2,5) and S=x^(2)+y^(2)-25 (ii) P(0,0) and S=x^(2)+y^(2)-14x+2y+25 (iii) P=(2,5) and S=x^(2)+y^(2)-5x+4y-5 (iv) P=(12,17) and S=x^(2)+y^(2)-6x-8y-25 (v) P=(1,3) and S=x^(2)+y^(2)-2x+4y-11