Home
Class 12
MATHS
The locus of the points of intersection ...

The locus of the points of intersection of the lines `x cos theta+y sin theta=a ` and `x sin theta-y cos theta=b`, (`theta=` variable) is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If (alpha, beta) is a point of intersection of the lines xcostheta +y sin theta= 3 and x sin theta-y cos theta= 4 where theta is parameter, then maximum value of 2^((alpha+beta)/(sqrt(2)) is

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Eliminate theta from the following equation : x cos theta - y sin theta = a, x sin theta + y cos theta = b

The locus of the point of intersection of tangents to the circle x=a cos theta, y=a sin theta at points whose parametric angles differ by pi//4 is

Find the distance between the points : (cos theta, sin theta), (sin theta, cos theta)

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

If the line x cos theta+y sin theta=P is the normal to the curve (x+a)y=1,then theta may lie in

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =