Home
Class 12
MATHS
Locate the position of the point P with ...

Locate the position of the point P with respect to the circle S=0 when
(i) P(1,2) and `S=x^(2)+y^(2)+6x+8y-96`
(ii) P(3,4) and `S=x^(2)+y^(2)-4x-6y-12`
(iii) P(2,-1) and `S=x^(2)+y^(2)-2x-4y+3`
(iv) P(1,5) and `S=x^(2)+y^(2)-2x-4y+3`

Text Solution

AI Generated Solution

The correct Answer is:
To locate the position of the point \( P \) with respect to the circle defined by the equation \( S = 0 \), we will substitute the coordinates of the point \( P(x, y) \) into the equation of the circle and analyze the result. ### Step-by-Step Solution: **(i) For \( P(1, 2) \) and \( S = x^2 + y^2 + 6x + 8y - 96 \)** 1. Substitute \( P(1, 2) \) into the equation: \[ S = 1^2 + 2^2 + 6(1) + 8(2) - 96 \] 2. Calculate each term: \[ S = 1 + 4 + 6 + 16 - 96 \] \[ S = 27 - 96 = -69 \] 3. Since \( S < 0 \), the point \( P(1, 2) \) lies **inside the circle**. --- **(ii) For \( P(3, 4) \) and \( S = x^2 + y^2 - 4x - 6y - 12 \)** 1. Substitute \( P(3, 4) \) into the equation: \[ S = 3^2 + 4^2 - 4(3) - 6(4) - 12 \] 2. Calculate each term: \[ S = 9 + 16 - 12 - 24 - 12 \] \[ S = 25 - 48 = -23 \] 3. Since \( S < 0 \), the point \( P(3, 4) \) lies **inside the circle**. --- **(iii) For \( P(2, -1) \) and \( S = x^2 + y^2 - 2x - 4y + 3 \)** 1. Substitute \( P(2, -1) \) into the equation: \[ S = 2^2 + (-1)^2 - 2(2) - 4(-1) + 3 \] 2. Calculate each term: \[ S = 4 + 1 - 4 + 4 + 3 \] \[ S = 8 \] 3. Since \( S > 0 \), the point \( P(2, -1) \) lies **outside the circle**. --- **(iv) For \( P(1, 5) \) and \( S = x^2 + y^2 - 2x - 4y + 3 \)** 1. Substitute \( P(1, 5) \) into the equation: \[ S = 1^2 + 5^2 - 2(1) - 4(5) + 3 \] 2. Calculate each term: \[ S = 1 + 25 - 2 - 20 + 3 \] \[ S = 7 \] 3. Since \( S > 0 \), the point \( P(1, 5) \) lies **outside the circle**. --- ### Summary of Results: - \( P(1, 2) \) lies **inside** the circle. - \( P(3, 4) \) lies **inside** the circle. - \( P(2, -1) \) lies **outside** the circle. - \( P(1, 5) \) lies **outside** the circle.
Promotional Banner

Similar Questions

Explore conceptually related problems

Locate the position of the point P with resect to the circle S = 0 when P(4,2) and S-=2x^(2)+2y^(2)-5x-4y-3=0

Find the power of the point P w.r.t the circle S=0 when (i) P(1,2) and S=x^(2)+y^(2)+6x+8y-96 (ii) P(5,-6) and S=x^(2)+y^(2)+8x+12y+15 (iii) P(2,4) and S=x^(2)+y^(2)-4x-6y-12

Find the power of the point P with respect to the circle S = 0 when P =(2,3) and S=x^2+y^2-2x+8y-23=0

Find the length of the tangent from P to the circle S=0 when (i) P(-2,5) and S=x^(2)+y^(2)-25 (ii) P(0,0) and S=x^(2)+y^(2)-14x+2y+25 (iii) P=(2,5) and S=x^(2)+y^(2)-5x+4y-5 (iv) P=(12,17) and S=x^(2)+y^(2)-6x-8y-25 (v) P=(1,3) and S=x^(2)+y^(2)-2x+4y-11

Find the equation of the tangent at P of the circle S=0 where P and S are given by (i) P=(3,4),S=x^(2)+y^(2)-4x-6y+11 (ii) P=(-1,1),S=x^(2)+y^(2)-5x+4y-12 (iii) P=(-6,-9),S=x^(2)+y^(2)+4x+6y-39 (iv) P=(7,-5),S=x^(2)+y^(2)-6x+4y-12

Find the equation of the normal at P of the circle S=0 where P and S are given by (i) P(3,-4),S=x^(2)+y^(2)+x+y-24 (ii) P(1,3),S=3(x^(2)+y^(2))-19x-29y+76 (iii) P(3,5),S=x^(2)+y^(2)-10x-2y+6 (iv) P(1,2),S=x^(2)+y^(2)-22x-4y+25

The chord of contact of (1,2) with respect to the circle x^(2)+y^(2)-4x-6y+2=0 is

The distance of the point (1,-2) from the common chord of the circles x^(2) + y^(2) - 5x +4y - 2= 0 " and " x^(2) +y^(2) - 2x + 8y + 3 = 0

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

The point diametrically opposite to the point P(1, 0) on the circle x^(2)+y^(2) + 2x+4y- 3 = 0 is