Home
Class 12
MATHS
Find the power of the point P w.r.t the ...

Find the power of the point P w.r.t the circle S=0 when
(i) P(1,2) and `S=x^(2)+y^(2)+6x+8y-96`
(ii) P(5,-6) and `S=x^(2)+y^(2)+8x+12y+15`
(iii) P(2,4) and `S=x^(2)+y^(2)-4x-6y-12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the power of a point \( P \) with respect to a circle defined by the equation \( S = 0 \), we can use the formula: \[ \text{Power of point } P = S_1 = x^2 + y^2 + 2gx + 2fy + c \] where \( g \), \( f \), and \( c \) are the coefficients from the general equation of the circle \( x^2 + y^2 + 2gx + 2fy + c = 0 \). Let's solve each part step by step. ### Part (i): \( P(1, 2) \) and \( S = x^2 + y^2 + 6x + 8y - 96 \) 1. **Identify coefficients**: From the equation \( S = x^2 + y^2 + 6x + 8y - 96 \), we have: - \( g = 3 \) (since \( 2g = 6 \)) - \( f = 4 \) (since \( 2f = 8 \)) - \( c = -96 \) 2. **Substitute point \( P(1, 2) \)**: \[ S_1 = 1^2 + 2^2 + 6 \cdot 1 + 8 \cdot 2 - 96 \] \[ = 1 + 4 + 6 + 16 - 96 \] \[ = 27 - 96 = -69 \] 3. **Calculate power**: \[ \text{Power of } P = \sqrt{S_1} = \sqrt{-69} = i\sqrt{69} \] ### Part (ii): \( P(5, -6) \) and \( S = x^2 + y^2 + 8x + 12y + 15 \) 1. **Identify coefficients**: From the equation \( S = x^2 + y^2 + 8x + 12y + 15 \), we have: - \( g = 4 \) (since \( 2g = 8 \)) - \( f = 6 \) (since \( 2f = 12 \)) - \( c = 15 \) 2. **Substitute point \( P(5, -6) \)**: \[ S_1 = 5^2 + (-6)^2 + 8 \cdot 5 + 12 \cdot (-6) + 15 \] \[ = 25 + 36 + 40 - 72 + 15 \] \[ = 101 - 72 = 29 \] 3. **Calculate power**: \[ \text{Power of } P = \sqrt{S_1} = \sqrt{29} \] ### Part (iii): \( P(2, 4) \) and \( S = x^2 + y^2 - 4x - 6y - 12 \) 1. **Identify coefficients**: From the equation \( S = x^2 + y^2 - 4x - 6y - 12 \), we have: - \( g = -2 \) (since \( 2g = -4 \)) - \( f = -3 \) (since \( 2f = -6 \)) - \( c = -12 \) 2. **Substitute point \( P(2, 4) \)**: \[ S_1 = 2^2 + 4^2 - 4 \cdot 2 - 6 \cdot 4 - 12 \] \[ = 4 + 16 - 8 - 24 - 12 \] \[ = 20 - 44 = -24 \] 3. **Calculate power**: \[ \text{Power of } P = \sqrt{S_1} = \sqrt{-24} = i\sqrt{24} = 2i\sqrt{6} \] ### Summary of Results: 1. Power of \( P(1, 2) \) is \( i\sqrt{69} \). 2. Power of \( P(5, -6) \) is \( \sqrt{29} \). 3. Power of \( P(2, 4) \) is \( 2i\sqrt{6} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Locate the position of the point P with respect to the circle S=0 when (i) P(1,2) and S=x^(2)+y^(2)+6x+8y-96 (ii) P(3,4) and S=x^(2)+y^(2)-4x-6y-12 (iii) P(2,-1) and S=x^(2)+y^(2)-2x-4y+3 (iv) P(1,5) and S=x^(2)+y^(2)-2x-4y+3

Find the length of the tangent from P to the circle S=0 when (i) P(-2,5) and S=x^(2)+y^(2)-25 (ii) P(0,0) and S=x^(2)+y^(2)-14x+2y+25 (iii) P=(2,5) and S=x^(2)+y^(2)-5x+4y-5 (iv) P=(12,17) and S=x^(2)+y^(2)-6x-8y-25 (v) P=(1,3) and S=x^(2)+y^(2)-2x+4y-11

Find the power of the point P with respect to the circle S = 0 when P =(2,3) and S=x^2+y^2-2x+8y-23=0

Locate the position of the point P with resect to the circle S = 0 when P(4,2) and S-=2x^(2)+2y^(2)-5x-4y-3=0

Find the equation of the normal at P of the circle S=0 where P and S are given by (i) P(3,-4),S=x^(2)+y^(2)+x+y-24 (ii) P(1,3),S=3(x^(2)+y^(2))-19x-29y+76 (iii) P(3,5),S=x^(2)+y^(2)-10x-2y+6 (iv) P(1,2),S=x^(2)+y^(2)-22x-4y+25

Find the equation of the tangent at P of the circle S=0 where P and S are given by (i) P=(3,4),S=x^(2)+y^(2)-4x-6y+11 (ii) P=(-1,1),S=x^(2)+y^(2)-5x+4y-12 (iii) P=(-6,-9),S=x^(2)+y^(2)+4x+6y-39 (iv) P=(7,-5),S=x^(2)+y^(2)-6x+4y-12

Locate the position of the point (2,4) w.r.t the circle x^(2)+y^(2)-5x-6y+11=0

Find the position of points P(1,3) w.r.t. parabolas y^(2)=4x and x^(2)=8y .

Find the position of points P(1,3) w.r.t. parabolas y^(2)=4x and x^(2)=8y .

The number of common tangents to the circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+6x+18y+26=0 , is