Home
Class 12
MATHS
Find the equation of the tangent at P of...

Find the equation of the tangent at P of the circle S=0 where P and S are given by
(i) `P=(3,4),S=x^(2)+y^(2)-4x-6y+11`
(ii) `P=(-1,1),S=x^(2)+y^(2)-5x+4y-12`
(iii) `P=(-6,-9),S=x^(2)+y^(2)+4x+6y-39`
(iv) `P=(7,-5),S=x^(2)+y^(2)-6x+4y-12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equations of the tangents at the given points \( P \) for the circles defined by the equations \( S \), we will follow these steps for each part of the question. ### Step-by-Step Solution #### (i) For \( P = (3, 4) \) and \( S = x^2 + y^2 - 4x - 6y + 11 = 0 \) 1. **Identify the center and radius of the circle**: - The equation of the circle can be rewritten in standard form: \[ S = (x^2 - 4x) + (y^2 - 6y) + 11 = 0 \] Completing the square: \[ (x - 2)^2 - 4 + (y - 3)^2 - 9 + 11 = 0 \implies (x - 2)^2 + (y - 3)^2 = 2 \] - Center \( C = (2, 3) \) and radius \( r = \sqrt{2} \). 2. **Find the slope of the radius \( CP \)**: - Slope \( m_{CP} = \frac{y_P - y_C}{x_P - x_C} = \frac{4 - 3}{3 - 2} = 1 \). 3. **Find the slope of the tangent line**: - The slope of the tangent line \( m_t \) is the negative reciprocal of \( m_{CP} \): \[ m_t = -1 \] 4. **Use point-slope form to find the equation of the tangent**: - Using point \( P(3, 4) \): \[ y - 4 = -1(x - 3) \implies y - 4 = -x + 3 \implies y = -x + 7 \] #### (ii) For \( P = (-1, 1) \) and \( S = x^2 + y^2 - 5x + 4y - 12 = 0 \) 1. **Identify the center and radius of the circle**: - Rewriting: \[ (x^2 - 5x) + (y^2 + 4y) - 12 = 0 \] Completing the square: \[ (x - \frac{5}{2})^2 - \frac{25}{4} + (y + 2)^2 - 4 - 12 = 0 \implies (x - \frac{5}{2})^2 + (y + 2)^2 = \frac{61}{4} \] - Center \( C = \left(\frac{5}{2}, -2\right) \) and radius \( r = \frac{\sqrt{61}}{2} \). 2. **Find the slope of the radius \( CP \)**: - Slope \( m_{CP} = \frac{1 + 2}{-1 - \frac{5}{2}} = \frac{3}{-\frac{7}{2}} = -\frac{6}{7} \). 3. **Find the slope of the tangent line**: - \( m_t = \frac{7}{6} \). 4. **Use point-slope form**: - Using point \( P(-1, 1) \): \[ y - 1 = \frac{7}{6}(x + 1) \implies y = \frac{7}{6}x + \frac{7}{6} + 1 = \frac{7}{6}x + \frac{13}{6} \] #### (iii) For \( P = (-6, -9) \) and \( S = x^2 + y^2 + 4x + 6y - 39 = 0 \) 1. **Identify the center and radius of the circle**: - Rewriting: \[ (x^2 + 4x) + (y^2 + 6y) - 39 = 0 \] Completing the square: \[ (x + 2)^2 - 4 + (y + 3)^2 - 9 - 39 = 0 \implies (x + 2)^2 + (y + 3)^2 = 52 \] - Center \( C = (-2, -3) \) and radius \( r = \sqrt{52} = 2\sqrt{13} \). 2. **Find the slope of the radius \( CP \)**: - Slope \( m_{CP} = \frac{-9 + 3}{-6 + 2} = \frac{-6}{-4} = \frac{3}{2} \). 3. **Find the slope of the tangent line**: - \( m_t = -\frac{2}{3} \). 4. **Use point-slope form**: - Using point \( P(-6, -9) \): \[ y + 9 = -\frac{2}{3}(x + 6) \implies y = -\frac{2}{3}x - 4 - 9 = -\frac{2}{3}x - 13 \] #### (iv) For \( P = (7, -5) \) and \( S = x^2 + y^2 - 6x + 4y - 12 = 0 \) 1. **Identify the center and radius of the circle**: - Rewriting: \[ (x^2 - 6x) + (y^2 + 4y) - 12 = 0 \] Completing the square: \[ (x - 3)^2 - 9 + (y + 2)^2 - 4 - 12 = 0 \implies (x - 3)^2 + (y + 2)^2 = 25 \] - Center \( C = (3, -2) \) and radius \( r = 5 \). 2. **Find the slope of the radius \( CP \)**: - Slope \( m_{CP} = \frac{-5 + 2}{7 - 3} = \frac{-3}{4} \). 3. **Find the slope of the tangent line**: - \( m_t = \frac{4}{3} \). 4. **Use point-slope form**: - Using point \( P(7, -5) \): \[ y + 5 = \frac{4}{3}(x - 7) \implies y = \frac{4}{3}x - \frac{28}{3} - 5 = \frac{4}{3}x - \frac{43}{3} \] ### Final Results 1. **Tangent equation at \( P(3, 4) \)**: \( y = -x + 7 \) 2. **Tangent equation at \( P(-1, 1) \)**: \( y = \frac{7}{6}x + \frac{13}{6} \) 3. **Tangent equation at \( P(-6, -9) \)**: \( y = -\frac{2}{3}x - 13 \) 4. **Tangent equation at \( P(7, -5) \)**: \( y = \frac{4}{3}x - \frac{43}{3} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the normal at P of the circle S=0 where P and S are given by (i) P(3,-4),S=x^(2)+y^(2)+x+y-24 (ii) P(1,3),S=3(x^(2)+y^(2))-19x-29y+76 (iii) P(3,5),S=x^(2)+y^(2)-10x-2y+6 (iv) P(1,2),S=x^(2)+y^(2)-22x-4y+25

Find the length of the tangent from P to the circle S=0 when (i) P(-2,5) and S=x^(2)+y^(2)-25 (ii) P(0,0) and S=x^(2)+y^(2)-14x+2y+25 (iii) P=(2,5) and S=x^(2)+y^(2)-5x+4y-5 (iv) P=(12,17) and S=x^(2)+y^(2)-6x-8y-25 (v) P=(1,3) and S=x^(2)+y^(2)-2x+4y-11

Locate the position of the point P with respect to the circle S=0 when (i) P(1,2) and S=x^(2)+y^(2)+6x+8y-96 (ii) P(3,4) and S=x^(2)+y^(2)-4x-6y-12 (iii) P(2,-1) and S=x^(2)+y^(2)-2x-4y+3 (iv) P(1,5) and S=x^(2)+y^(2)-2x-4y+3

Find the equation of the tangents to the circle x^(2)+y^(2)-4x+6y-12=0 which are parallel to x+y-8=0

Find the power of the point P w.r.t the circle S=0 when (i) P(1,2) and S=x^(2)+y^(2)+6x+8y-96 (ii) P(5,-6) and S=x^(2)+y^(2)+8x+12y+15 (iii) P(2,4) and S=x^(2)+y^(2)-4x-6y-12

Find the equation of the image of the circle x^(2)+y^(2)-6x-4y+12=0 by the line mirror x+y-1=0

Find the equation of tangents to circle x^(2)+y^(2)-2x+4y-4=0 drawn from point P(2,3).

Locate the position of the point P with resect to the circle S = 0 when P(4,2) and S-=2x^(2)+2y^(2)-5x-4y-3=0

Find the centre and radius of each of the circles whose equations are given below: (i) 3x^(2)+3y^(2)-5x-6y+4=0 (ii) 3x^(2)+3y^(2)+6x-12-1=0 (iii) x^(2)+y^(2)+6x+8y-96=0 (iv) 2x^(2)+2y^(2)-4x+6y-3=0 (v) 2x^(2)+2y^(2)-3x+2y-1=0 (vi) x^(2)+y^(2)+2x-4y-4=0 (vii) x^(2)+y^(2)-4x-8y-41=0

Find the equations of the tangents to the circle x^2+y^2-6x+4y=12 which are parallel to the straight line 4x+3y+5=0