Home
Class 12
MATHS
Find the length of the tangent from P to...

Find the length of the tangent from P to the circle S=0 when
(i) `P(-2,5)` and `S=x^(2)+y^(2)-25`
(ii) `P(0,0)` and `S=x^(2)+y^(2)-14x+2y+25`
(iii) `P=(2,5)` and `S=x^(2)+y^(2)-5x+4y-5`
(iv) `P=(12,17)` and `S=x^(2)+y^(2)-6x-8y-25`
(v) `P=(1,3)` and `S=x^(2)+y^(2)-2x+4y-11`

Text Solution

Verified by Experts

The correct Answer is:
(i) 2 (ii) 5 (iii) `sqrt(34)`
(iv) 10 (v) 3
Promotional Banner

Similar Questions

Explore conceptually related problems

Locate the position of the point P with respect to the circle S=0 when (i) P(1,2) and S=x^(2)+y^(2)+6x+8y-96 (ii) P(3,4) and S=x^(2)+y^(2)-4x-6y-12 (iii) P(2,-1) and S=x^(2)+y^(2)-2x-4y+3 (iv) P(1,5) and S=x^(2)+y^(2)-2x-4y+3

Find the power of the point P w.r.t the circle S=0 when (i) P(1,2) and S=x^(2)+y^(2)+6x+8y-96 (ii) P(5,-6) and S=x^(2)+y^(2)+8x+12y+15 (iii) P(2,4) and S=x^(2)+y^(2)-4x-6y-12

Find the equation of the tangent at P of the circle S=0 where P and S are given by (i) P=(3,4),S=x^(2)+y^(2)-4x-6y+11 (ii) P=(-1,1),S=x^(2)+y^(2)-5x+4y-12 (iii) P=(-6,-9),S=x^(2)+y^(2)+4x+6y-39 (iv) P=(7,-5),S=x^(2)+y^(2)-6x+4y-12

Find the equation of the normal at P of the circle S=0 where P and S are given by (i) P(3,-4),S=x^(2)+y^(2)+x+y-24 (ii) P(1,3),S=3(x^(2)+y^(2))-19x-29y+76 (iii) P(3,5),S=x^(2)+y^(2)-10x-2y+6 (iv) P(1,2),S=x^(2)+y^(2)-22x-4y+25

Find the power of the point P with respect to the circle S = 0 when P =(2,3) and S=x^2+y^2-2x+8y-23=0

Locate the position of the point P with resect to the circle S = 0 when P(4,2) and S-=2x^(2)+2y^(2)-5x-4y-3=0

If the length of the tangent from (2,5) to the circle x^(2) + y^(2) - 5x +4y + k = 0 is sqrt(37) then find k.

If the lengths of the tangents drawn from P to the circles x^(2)+y^(2)-2x+4y-20=0 and x^(2) +y^(2)-2x-8y+1=0 are in the ratio 2:1, then the locus P is

Find the equation of pair of tangents from (i) (0,0) to the circle x^(2)+y^(2)+10x+10y+40=0 (ii) (4,10) to the circle x^(2)+y^(2)=25 (iii) (3,2) to the circle x^(2)+y^(2)-6x+4y-2=0 (iv) (10,4) to the circle x^(2)+y^(2)=25 (v) (1,3) to the circle x^(2)+y^(2)-2x+4y-11=0

Find the equation of tangents to circle x^(2)+y^(2)-2x+4y-4=0 drawn from point P(2,3).