Home
Class 12
MATHS
If S-=x^(2)+y^(2)+2gx+2fy+c=0 represents...

If `S-=x^(2)+y^(2)+2gx+2fy+c=0` represents a circle then show that the straight line `lx+my+n=0`
(i) touches the circle S=0 if
`g^(2)+f^(2)-c=(gl+mf-n)^(2)/(l^(2)+m^(2))`
(ii) meets the circle S=0 in two points if
`g^(2)+f^(2)-cgt((gl+mf-n)^(2))/(l^(2)+m^(2))`
(iii) will not meet the circle if
`g^(2)+f^(2)-clt((gl+mf-n)^(2))/(l^(2)+m^(2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the line lx+my+n=0 is a normal to the circles S=0 iff gl+mf=n .

Prove that the line lx+my+n=0 toches the circle (x-a)^(2)+(y-b)^(2)=r^(2) if (al+bm+n)^(2)=r^(2)(l^(2)+m^(2))

The locus of th point (l,m). If the line lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is

Let x^(2)+y^(2)+2gx+2fy+c=0 be an equation of circle. Match the following lists :

If the line l x+m y+n=0 touches the circle x^2+y^2=a^2 , then prove that (l^2+m^2)a^2=n^2dot

Show that the circle S-= x^(2) + y^(2) + 2gx + 2fy + c = 0 touches the (i) X- axis if g^(2) = c

The line ax+by+by+c=0 is normal to the circle x^(2)+y^(2)+2gx+2fy+d=0, if

Find the conditions that the line (i) y = mx + c may touch the circle x^(2) +y^(2) = a^(2) , (ii) y = mx + c may touch the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 .

If the equation x^2+y^2+2h x y+2gx+2fy+c=0 represents a circle, then the condition for that circle to pass through three quadrants only but not passing through the origin is f^2> c (b) g^2>2 c >0 (d) h=0

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.