Home
Class 12
MATHS
Find the equation of the tangent at the ...

Find the equation of the tangent at the
point `30^(@)` (parametric value of `theta`) of the
circle is `x^(2) + y^(2) + 4x +6y - 39=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the tangent at the point corresponding to the parametric angle \( \theta = 30^\circ \) of the given circle, we can follow these steps: ### Step 1: Rewrite the Circle Equation The given equation of the circle is: \[ x^2 + y^2 + 4x + 6y - 39 = 0 \] We can rewrite this in standard form by completing the square. ### Step 2: Complete the Square 1. For \( x^2 + 4x \): \[ x^2 + 4x = (x + 2)^2 - 4 \] 2. For \( y^2 + 6y \): \[ y^2 + 6y = (y + 3)^2 - 9 \] Substituting these back into the equation: \[ (x + 2)^2 - 4 + (y + 3)^2 - 9 - 39 = 0 \] This simplifies to: \[ (x + 2)^2 + (y + 3)^2 - 52 = 0 \] Thus, the standard form of the circle is: \[ (x + 2)^2 + (y + 3)^2 = 52 \] ### Step 3: Identify the Center and Radius From the standard form, we can identify: - Center \( (-2, -3) \) - Radius \( r = \sqrt{52} = 2\sqrt{13} \) ### Step 4: Find the Point on the Circle for \( \theta = 30^\circ \) Using the parametric equations for the circle: \[ x = h + r \cos(\theta) \quad \text{and} \quad y = k + r \sin(\theta) \] where \( (h, k) \) is the center of the circle. Substituting \( h = -2 \), \( k = -3 \), \( r = 2\sqrt{13} \), and \( \theta = 30^\circ \): \[ x = -2 + 2\sqrt{13} \cos(30^\circ) = -2 + 2\sqrt{13} \cdot \frac{\sqrt{3}}{2} = -2 + \sqrt{39} \] \[ y = -3 + 2\sqrt{13} \sin(30^\circ) = -3 + 2\sqrt{13} \cdot \frac{1}{2} = -3 + \sqrt{13} \] ### Step 5: Write the Tangent Equation The equation of the tangent line at a point \( (x_0, y_0) \) on the circle is given by: \[ (x + 2)(x_0 + 2) + (y + 3)(y_0 + 3) = 52 \] Substituting \( (x_0, y_0) = (\sqrt{39} - 2, \sqrt{13} - 3) \): \[ (x + 2)(\sqrt{39}) + (y + 3)(\sqrt{13}) = 52 \] ### Step 6: Simplify the Tangent Equation Expanding and simplifying: \[ \sqrt{39}x + 2\sqrt{39} + \sqrt{13}y + 3\sqrt{13} = 52 \] Rearranging gives: \[ \sqrt{39}x + \sqrt{13}y + (2\sqrt{39} + 3\sqrt{13} - 52) = 0 \] ### Final Tangent Equation Thus, the equation of the tangent line at the point corresponding to \( \theta = 30^\circ \) is: \[ \sqrt{39}x + \sqrt{13}y + (2\sqrt{39} + 3\sqrt{13} - 52) = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the parametric representation of the circle x^(2) +y^(2) - 2 x - 4 y - 4 = 0

Find the parametric equations of the circles x^(2)+y^(2)=16 .

Find the equation of the circle the end points of whose diameter are the centres of the circle : x^2 + y^2 + 6x - 14y=1 and x^2 + y^2 - 4x + 10y=2 .

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

The parametric equation of the circle x^(2)+y^(2)+8x-6y=0 are

Find the parametric form of the equation of the circle x^2+y^2+p x+p y=0.

Find the parametric form of the equation of the circle x^2+y^2+p x+p y=0.

Obtain the parametric equation of the circle represented by x^(2) + y^(2) + 6x + 8y- 96= 0

Find the equations of the tangents from the point A(3,2) to the circle x^(2)+y^(2)+4x+6y+8=0 .