Home
Class 12
MATHS
Find the number of possible common tange...

Find the number of possible common tangents of following pairs of circles
(i) `x^(2)+y^(2)-14x+6y+33=0`
`x^(2)+y^(2)+30x-2y+1=0`
(ii) `x^(2)+y^(2)+6x+6y+14=0`
`x^(2)+y^(2)-2x-4y-4=0`
(iii) `x^(2)+y^(2)-4x-2y+1=0`
`x^(2)+y^(2)-6x-4y+4=0`
(iv) `x^(2)+y^(2)-4x+2y-4=0`
`x^(2)+y^(2)+2x-6y+6=0`
(v) `x^(2)+y^(2)+4x-6y-3=0`
`x^(2)+y^(2)+4x-2y+4=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of possible common tangents of the given pairs of circles, we will follow these steps: ### Step 1: Convert the circle equations to standard form The general equation of a circle is given by: \[ (x - h)^2 + (y - k)^2 = r^2 \] where \((h, k)\) is the center and \(r\) is the radius. ### Step 2: Identify the centers and radii From the given equations, we will extract the centers and radii for each pair of circles. ### Step 3: Calculate the distance between the centers The distance \(d\) between the centers of two circles with centers \((h_1, k_1)\) and \((h_2, k_2)\) is given by: \[ d = \sqrt{(h_2 - h_1)^2 + (k_2 - k_1)^2} \] ### Step 4: Determine the number of common tangents Using the following conditions: 1. If \(d > r_1 + r_2\), there are **4 common tangents** (2 direct and 2 transverse). 2. If \(d = r_1 + r_2\), there are **3 common tangents** (1 at the point of contact and 2 direct). 3. If \(|r_1 - r_2| < d < r_1 + r_2\), there are **2 common tangents** (2 direct). 4. If \(d = |r_1 - r_2|\), there is **1 common tangent** (1 at the point of contact). 5. If \(d < |r_1 - r_2|\), there are **0 common tangents**. ### Step 5: Apply the above steps to each pair of circles #### (i) Circles: \[ x^2 + y^2 - 14x + 6y + 33 = 0 \quad \text{and} \quad x^2 + y^2 + 30x - 2y + 1 = 0 \] 1. **Convert to standard form**: - Circle 1: Center \((7, -3)\), Radius \(5\) - Circle 2: Center \((-15, 1)\), Radius \(15\) 2. **Distance between centers**: \[ d = \sqrt{(-15 - 7)^2 + (1 + 3)^2} = \sqrt{(-22)^2 + (4)^2} = \sqrt{484 + 16} = \sqrt{500} = 10\sqrt{5} \] 3. **Check conditions**: \[ 10\sqrt{5} \approx 22.36 > 5 + 15 = 20 \quad \text{(4 common tangents)} \] #### (ii) Circles: \[ x^2 + y^2 + 6x + 6y + 14 = 0 \quad \text{and} \quad x^2 + y^2 - 2x - 4y - 4 = 0 \] 1. **Convert to standard form**: - Circle 1: Center \((-3, -3)\), Radius \(2\) - Circle 2: Center \((1, 2)\), Radius \(3\) 2. **Distance between centers**: \[ d = \sqrt{(1 + 3)^2 + (2 + 3)^2} = \sqrt{(4)^2 + (5)^2} = \sqrt{16 + 25} = \sqrt{41} \] 3. **Check conditions**: \[ \sqrt{41} \approx 6.4 > 2 + 3 = 5 \quad \text{(4 common tangents)} \] #### (iii) Circles: \[ x^2 + y^2 - 4x - 2y + 1 = 0 \quad \text{and} \quad x^2 + y^2 - 6x - 4y + 4 = 0 \] 1. **Convert to standard form**: - Circle 1: Center \((2, 1)\), Radius \(1\) - Circle 2: Center \((3, 2)\), Radius \(3\) 2. **Distance between centers**: \[ d = \sqrt{(3 - 2)^2 + (2 - 1)^2} = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \] 3. **Check conditions**: \[ \sqrt{2} < 3 - 1 = 2 \quad \text{(0 common tangents)} \] #### (iv) Circles: \[ x^2 + y^2 - 4x + 2y - 4 = 0 \quad \text{and} \quad x^2 + y^2 + 2x - 6y + 6 = 0 \] 1. **Convert to standard form**: - Circle 1: Center \((2, -1)\), Radius \(3\) - Circle 2: Center \((-1, 3)\), Radius \(2\) 2. **Distance between centers**: \[ d = \sqrt{(-1 - 2)^2 + (3 + 1)^2} = \sqrt{(-3)^2 + (4)^2} = \sqrt{9 + 16} = 5 \] 3. **Check conditions**: \[ 5 = 3 + 2 \quad \text{(3 common tangents)} \] #### (v) Circles: \[ x^2 + y^2 + 4x - 6y - 3 = 0 \quad \text{and} \quad x^2 + y^2 + 4x - 2y + 4 = 0 \] 1. **Convert to standard form**: - Circle 1: Center \((-2, 3)\), Radius \(4\) - Circle 2: Center \((-2, 1)\), Radius \(1\) 2. **Distance between centers**: \[ d = \sqrt{(-2 - (-2))^2 + (1 - 3)^2} = \sqrt{0 + (-2)^2} = 2 \] 3. **Check conditions**: \[ 2 < 4 - 1 = 3 \quad \text{(0 common tangents)} \] ### Final Results 1. **(i)** 4 common tangents 2. **(ii)** 4 common tangents 3. **(iii)** 0 common tangents 4. **(iv)** 3 common tangents 5. **(v)** 0 common tangents
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of possible common tangents that exist for the following pairs of circles. x^(2) + y^(2) + 6x + 6y + 14 = 0 x^(2) + y(2) - 2x -4y -4 =0

The circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+4x+6y+4=0

The circle x^(2)+y^(2)-4x-6y-12=0, x^(2)+y^(2)+6x-8y+21=0 are

Find the equation of the common chord of the following pair of circles x^2+y^2-4x-4y+3=0 x^2+y^2-5x-6y+4=0

Find the transverse common tangents of the circles x^(2) + y^(2) -4x -10y + 28 = 0 and x^(2) + y^(2) + 4x - 6y + 4= 0.

Find the centre and radius of each of the circles whose equations are given below: (i) 3x^(2)+3y^(2)-5x-6y+4=0 (ii) 3x^(2)+3y^(2)+6x-12-1=0 (iii) x^(2)+y^(2)+6x+8y-96=0 (iv) 2x^(2)+2y^(2)-4x+6y-3=0 (v) 2x^(2)+2y^(2)-3x+2y-1=0 (vi) x^(2)+y^(2)+2x-4y-4=0 (vii) x^(2)+y^(2)-4x-8y-41=0

Find the number of common tangents that can be drawn to the circles x^2+y^2-4x-6y-3=0 and x^2+y^2+2x+2y+1=0

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

Find the number of common tangents of the circles x^2+y^2-2x-6y+9=0 and x^2+y^2+6x-2y+1=0

The number of common tangents to the circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+6x+18y+26=0 , is