Home
Class 12
MATHS
The internal centre of similitude of the...

The internal centre of similitude of the two circles `x^(2)+y^(2)+6x-2y+1=0, x^(2)+y^(2)-2x-6y+9=0` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the internal center of similitude of the two circles given by the equations: 1. \( x^2 + y^2 + 6x - 2y + 1 = 0 \) 2. \( x^2 + y^2 - 2x - 6y + 9 = 0 \) we will follow these steps: ### Step 1: Rewrite the equations in standard form We need to rewrite both equations in the standard form of a circle, which is \((x - h)^2 + (y - k)^2 = r^2\). **For the first circle:** \[ x^2 + y^2 + 6x - 2y + 1 = 0 \] Rearranging gives: \[ x^2 + 6x + y^2 - 2y = -1 \] Completing the square for \(x\) and \(y\): \[ (x^2 + 6x + 9) + (y^2 - 2y + 1) = -1 + 9 + 1 \] \[ (x + 3)^2 + (y - 1)^2 = 9 \] This gives us the center \(C_1(-3, 1)\) and radius \(r_1 = 3\). **For the second circle:** \[ x^2 + y^2 - 2x - 6y + 9 = 0 \] Rearranging gives: \[ x^2 - 2x + y^2 - 6y = -9 \] Completing the square for \(x\) and \(y\): \[ (x^2 - 2x + 1) + (y^2 - 6y + 9) = -9 + 1 + 9 \] \[ (x - 1)^2 + (y - 3)^2 = 1 \] This gives us the center \(C_2(1, 3)\) and radius \(r_2 = 1\). ### Step 2: Find the internal center of similitude The formula for the internal center of similitude \(S_i\) is given by: \[ S_i = \left( \frac{r_1 \cdot x_2 + r_2 \cdot x_1}{r_1 + r_2}, \frac{r_1 \cdot y_2 + r_2 \cdot y_1}{r_1 + r_2} \right) \] Where \((x_1, y_1)\) and \((x_2, y_2)\) are the centers of the circles. Substituting the values: - \(C_1(-3, 1)\) gives \(x_1 = -3\), \(y_1 = 1\) - \(C_2(1, 3)\) gives \(x_2 = 1\), \(y_2 = 3\) - \(r_1 = 3\) and \(r_2 = 1\) Now substituting into the formula: \[ S_i = \left( \frac{3 \cdot 1 + 1 \cdot (-3)}{3 + 1}, \frac{3 \cdot 3 + 1 \cdot 1}{3 + 1} \right) \] Calculating the x-coordinate: \[ S_{ix} = \frac{3 - 3}{4} = \frac{0}{4} = 0 \] Calculating the y-coordinate: \[ S_{iy} = \frac{9 + 1}{4} = \frac{10}{4} = 2.5 \] Thus, the internal center of similitude is: \[ S_i = (0, 2.5) \] ### Final Answer The internal center of similitude of the two circles is \( (0, 2.5) \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is

The internal centre of similitude of the circles x^(2)+y^(2)-2x+4y+4=0, x^(2)+y^(2)+4x-2y+1=0 divides the segment joining their centres in the ratio

The centre of similutude of the circles x^(2)+y^(2)-2x-6y+6=0, x^(2)+y^(2)=1 is

The internal centre of similitude of two circles (x-3)^(2)+(y-2)^(2)=9,(x+5)^(2)+(y+6)^(2)=9 is

The two circles x^(2)+y^(2)-2x-3=0 and x^(2)+y^(2)-4x-6y-8=0 are such that

Find the centre and radius of the circle x^(2) + y^(2) + 6x -10y -2 =0

The circle x^(2)+y^(2)-4x-6y-12=0, x^(2)+y^(2)+6x-8y+21=0 are

Find the centre and radius of the circle x^(2) + y^(2) - 6x + 4y - 12 =0 .

Find the centre and radius of the circle 3x^(2) +3y^(2) - 6x +9y - 8 =0 .

Find the centre and radius of the circle 3x^(2)+ 3y^(2) - 6x + 4y - 4 = 0