Home
Class 12
MATHS
The parametric equations of the circle x...

The parametric equations of the circle `x^(2)+y^(2)+2x+4y-11=0` are

A

`x=1+4cos theta,y=2+4sin theta`

B

`x=-1+4cos theta ,y=2+4sin theta`

C

`x=-1+4cos theta , y=-2+ 4 sin theta`

D

`x=1-4cos theta , y=2-4sin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the parametric equations of the circle given by the equation \(x^2 + y^2 + 2x + 4y - 11 = 0\), we will follow these steps: ### Step 1: Rewrite the Circle Equation We start with the given equation of the circle: \[ x^2 + y^2 + 2x + 4y - 11 = 0 \] We can rearrange it to group the \(x\) and \(y\) terms: \[ x^2 + 2x + y^2 + 4y = 11 \] ### Step 2: Complete the Square Next, we complete the square for the \(x\) and \(y\) terms. **For \(x\):** \[ x^2 + 2x \quad \text{can be rewritten as} \quad (x + 1)^2 - 1 \] **For \(y\):** \[ y^2 + 4y \quad \text{can be rewritten as} \quad (y + 2)^2 - 4 \] Substituting these back into the equation gives: \[ ((x + 1)^2 - 1) + ((y + 2)^2 - 4) = 11 \] Simplifying this: \[ (x + 1)^2 + (y + 2)^2 - 5 = 11 \] \[ (x + 1)^2 + (y + 2)^2 = 16 \] ### Step 3: Identify the Center and Radius From the equation \((x + 1)^2 + (y + 2)^2 = 16\), we can identify: - The center of the circle \((h, k)\) is \((-1, -2)\). - The radius \(r\) is \(\sqrt{16} = 4\). ### Step 4: Write the Parametric Equations The parametric equations of a circle are given by: \[ x = h + r \cos \theta \] \[ y = k + r \sin \theta \] Substituting \(h = -1\), \(k = -2\), and \(r = 4\): \[ x = -1 + 4 \cos \theta \] \[ y = -2 + 4 \sin \theta \] ### Final Parametric Equations Thus, the parametric equations of the circle are: \[ x = -1 + 4 \cos \theta \] \[ y = -2 + 4 \sin \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Parametric equation of the circle x^(2)+y^(2)=16 are

The parametric equation of the circle x^(2)+y^(2)+8x-6y=0 are

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

Find the parametric equations of the circles x^(2)+y^(2)=16 .

Find the parametric equation of the circles : x^2 +y^2 =9

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0

Find the parametric representation of the circle x^(2) +y^(2) - 2 x - 4 y - 4 = 0

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0

The parametric point on the circle x^(2)+y^(2)=a^(2) is :