Home
Class 12
MATHS
Locus of the point (sec h theta, tan h t...

Locus of the point `(sec h theta, tan h theta)` is

A

`x^(2)+y^(2)=1`

B

`x^(2)-y^(2)=1`

C

`x^(2)+y^(2)+1=0`

D

`x^(2)-y^(2)=x+y`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the point \((\sec h \theta, \tan h \theta)\), we will follow these steps: ### Step 1: Define the variables Let: - \(x = \sec h \theta\) - \(y = \tan h \theta\) ### Step 2: Use the hyperbolic identity We know the hyperbolic identity: \[ \sec h^2 \theta - \tan h^2 \theta = 1 \] This can be rewritten using our definitions of \(x\) and \(y\): \[ x^2 - y^2 = 1 \] ### Step 3: Rearrange the equation Rearranging the equation gives us: \[ x^2 - y^2 = 1 \] ### Conclusion The locus of the point \((\sec h \theta, \tan h \theta)\) is given by the equation: \[ x^2 - y^2 = 1 \] ### Final Answer Thus, the correct option is: **Option 2: \(x^2 - y^2 = 1\)**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

Solve 4 cos theta-3 sec theta=tan theta .

Prove the following identities : sqrt((1+sin theta)/(1-sin theta)) = sec theta + tan theta where theta is a acute

Prove that (sec theta+tan theta -1)/(tan theta -sec theta +1)=cos theta/(1-sin theta)

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

If theta is eliminated from the equations a sec theta-x tan theta=y" and "b sec theta+y tan theta=x (a and b are constants), then :

Solve the following (1+cot theta -cosec theta )(1+tan theta +sec theta )

Evaluate the following limits : Lim_(theta to pi/2 ) (sec theta - tan theta )

If theta is an acute angle and tan theta + sec theta = 1.5 , find sin theta, tan theta and sec theta .